
Efficient Top-k Algorithms for Fuzzy Search in String
Collections

Rares Vernica
Department of Computer Science

University of California, Irvine, CA 92697, USA
rares@ics.uci.edu

Chen Li
Department of Computer Science

University of California, Irvine, CA 92697, USA
chenli@ics.uci.edu

ABSTRACT

An approximate search query on a collection of strings finds
those strings in the collection that are similar to a given
query string, where similarity is defined using a given sim-
ilarity function such as Jaccard, cosine, and edit distance.
Answering approximate queries efficiently is important in
many applications such as search engines, data cleaning,
query relaxation, and spell checking, where inconsistencies
and errors exist in user queries as well as data. In this pa-
per, we study the problem of efficiently computing the best
answers to an approximate string query, where the quality
of a string is based on both its importance and its similarity
to the query string. We first develop a progressive algorithm
that answers a ranking query by using the results of several
approximate range queries, leveraging existing search tech-
niques. We then develop efficient algorithms for answering
ranking queries using indexing structures of gram-based in-
verted lists. We answer a ranking query by traversing the
inverted lists, pruning and skipping irrelevant string ids, it-
eratively increasing the pruning and skipping power, and
doing early termination. We have conducted extensive ex-
periments on real datasets to evaluate the proposed algo-
rithms and report our findings.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; H.2.8 [Database Applications]:
Miscellaneous

General Terms

Algorithms, Experimentation, Performance

1. INTRODUCTION
Consider an information system that has a relational ta-

ble with records about actors. Its schema is (ID, First-
Name, LastName, Popularity, . . .), where the “Popularity”
attribute has values between 0 and 1 indicating how popu-
lar this actor is (a higher value means a higher popularity).
Figure 1 shows some of the records in the relation, with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KEYS’09, June 28, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-570-3/09/06 ...$10.00.

the first four columns corresponding to the four attributes.
Suppose a user wants to find actors by providing a string
Shwartzenetrugger as a last name. There is no record in
the table that matches this string exactly, possibly due to
the limited knowledge the user has about the exact spelling
of the actor name(s) he or she is looking for.

ID FirstName LastName Popularity ED

10 Al Swartzberg 0.20 8

11 Hanna Wartenegg 0.18 8

12 Rik Swartzwelder 0.10 8

13 Joey Swartzentruber 0.10 4

14 Rene Swartenbroekx 0.11 9

15 Arnold Schwarzenegger 0.95 5

16 Luc Swartenbroeckx 0.15 9

.

.

.
.
.
.

.

.

.
.
.
.

Figure 1: Actor names, popularities, and edit dis-
tances to a query string “Shwartzenetrugger”.

Instead of returning an empty answer to the user, the sys-
tem relaxes the query condition and finds the best matches
that could potentially be what the user is looking for. To
find good answers, we need to use a similarity between the
last name of an actor and the query string. Various func-
tions can be used to measure the similarity between strings,
such as Jaccard similarity, cosine similarity, and edit dis-
tance (a.k.a. Levenshtein distance). As an example, the last
column in the figure shows the edit distance (marked as
“ED”) between each last name and the query string. Given
these distances, one possible answer is the record with id 13,
with the last name Swartzentruber, whose edit distance to
the query is 4, the smallest among all the actors. On the
other hand, this actor has a low popularity, which is 0.10.
The actor number 15, with the last name Schwarzenegger,
might also need to be returned, since it has a very high pop-
ularity (0.95) and its distance to the query is not too large
(5). If the system can return only one entry to the user,
it needs to make the decision based on how much impor-
tance it should give to the popularity of a data string and
its similarity to the query string.

As illustrated by this example, many information systems
need to support approximate string queries: given a collec-
tion of textual strings, such as last names in our example,
telephone numbers, or addresses, find the strings in the col-
lection that are similar to a given query string. Answer-
ing such queries is needed when the user may have limited
knowledge about the data, or the data stored in the repos-
itory contains inconsistencies or errors. The following are a

Figure 2: Overview of algorithms.

few applications. In record linkage [8], we often need to find
from a table those records that are similar to a given query
string that could represent the same real-world entity, even
though they have slightly different representations, such as
Jack Lemmon versus Jacky Lemon. In spell checking, given
an input document, a spellchecker needs to find possibly
mistyped words by searching in its dictionary those words
similar to the words in the document. Thus, for each word
that is not in the dictionary, we need to find potentially
matched candidates to recommend.

These applications often need to return the k best re-
sults for a query for a given integer k. As an example, a
spellchecker can make a limited number of suggestions due
to the user interface. In deciding the best answers, we need
to consider both the similarity of a string to the query string
and the “weight” of this string, such as the popularity of an
actor in our running example, or the inverse-document fre-
quency (IDF) of a word in a document corpus.
Contributions: In this paper we focus on how to support
efficient string relaxation. Specifically, we relax a string by
finding the most relevant strings based on their similarity
with the original string and their importance. In the lit-
erature there have been studies on string similarity search
assuming a similarity threshold is given. In addition to uti-
lizing these existing techniques, we also need novel indexes
and algorithms for finding top-k similar strings, which have
not been studied in the past.

We first formulate the problem of approximate ranking
queries on string collections, where the score of a record
string is related to both its weight and similarity to the query
string (Section 2). In Section 3 we present an iterative algo-
rithm that can leverage existing string-relaxation algorithms
developed for the case where a similarity threshold is given.
In Section 4 we develop a single-pass-traversal algorithm.
We use an index of inverted lists of grams and traverse the
lists using a heap. Finally, we show how the range-search al-
gorithm and the single-pass-traversal algorithm can be com-
bined in what we call the two-phase algorithm. Figure 2
gives an overview of the proposed algorithms in this pa-
per. In Section 5 we report our experimental results on real
datasets to evaluate the proposed techniques.

1.1 Related Work
There have been many studies on ranking queries on re-

lational tables after the pioneering studies by Fagin [3, 4].
See [7] for a recent survey. Our string-relaxation approach
is different from the traditional setting of top-k queries in
the following aspects. In the traditional setting, a record has
multiple attributes, and each attribute has a list of record ids
sorted based on their similarity to a query on that attribute.
An aggregation function is used to combine these similari-
ties (possibly with weights) to compute an overall score for
each record, and we want to find the k best records. In our

setting, we do not have multiple attributes. Instead, a string
has multiple grams, and we have multiple lists corresponding
to the grams in the query string. Each list only includes ids
of those strings with the corresponding gram. The similarity

of a string to the query string is closely related to the number

of occurrences of the string on these lists. In addition, each
string has a single weight, and we use its similarity to the
query string and the weight to compute its overall score.

Several recent papers have focused on approximate string
selection (or range search) [6, 9]. They assume a similarity
threshold is given. Our ranking algorithms do not assume
this threshold. In [6] strings are decomposed in grams and
an IDF score is computed for each gram. The weight of a
string is defined by aggregating the individual gram weights.
In our setting, weights are assigned at the string level and
grams do not have weights.

Many algorithms were developed for the problem of ap-
proximate string joins based on various similarity functions [1,
2, 5, 12], especially in the context of record linkage [8]. Some
of them are proposed in the context of relational DBMS sys-
tems. The VGRAM technique [10] was shown to improve
those algorithms based on edit distance.

Our approximate-string-search problem is different from
the problem of finding within a long text string those sub-
strings that are similar to a given query pattern. See [11]
for an excellent survey on research related to this problem.

2. PRELIMINARIES
String Collection: Let S be a set of strings, such as

a column of a table. Each string s in S has a weight w(s)
associated with it, which indicates the relative importance of
this string. The weight could be the importance of a string
in a particular application domain. For example, it can be
computed using the inverse-document frequency (IDF) of a
string.

Top-k Similar Strings: Given a string collection S, a
string r, a similarity function θ, an aggregation scoring func-
tion F (that assigns a score to a string), and an integer k,
the top-k similar strings to r are the k best strings in S in
terms of overall score to r.

For a string s, we use “|s|” to denote the length of s,
“s[i]” to denote the i-th character of s (starting from 1), and
“s[i, j]” to denote the substring from its i-th character to its
j-th character. A positional q-gram of s is a pair (i, g), where
g is the substring of length q starting at the i-th character
of s, i.e., g = s[i, i + q− 1]. The set of q-grams of s, denoted
by G(s, q), or simply G(s) when the q value is clear in the
context, is obtained by sliding a window of length q over
the characters of s. For instance, suppose q = 2, and s =
“john”, then G(s, q) = {jo, oh, hn}. The number of q-grams
of the string s is |s| − q + 1.

Given two strings, the similarity function θ computes a
similarity value θ(s1, s2) between two strings s1 and s2. Var-
ious similarity functions can be used. Commonly used simi-
larity functions include edit distance, Cosine similarity, and
Jaccard similarity. For instance, the Jaccard similarity of
two strings s1 and s2 based on q-grams is jaccard(s1, s2) =
|G(s1,q)∩G(s2,q)|
|G(s1,q)∪G(s2,q)|

.

The scoring function F computes F (r, s) as an overall
score of the string s to the string r in terms of its weight
and similarity to r.

For example, we can use Jaccard as the similarity function,

and a linear combination of the similarity and the weight of
the string as the final score of the string:

F
`

θ(r, s), w(s)
´

= α · θ(r, s) + β · w(s). (1)

3. ITERATIVERANGE-SEARCH-BASED AL-

GORITHM
We study how to answer a ranking query by answering

(possibly multiple) range selection queries. Each selection
query has a threshold on the similarity between the given
string and a string in the collection. In this way, we can
leverage existing approximate-string-selection techniques [12,
6, 9] without modifying their implementations. We develop
an algorithm called“Iterative Range Search”(“IRS”for short).
Algorithm 1 shows the pseudo-code of the algorithm. We
start with an initial similarity threshold, τ , which could be
a fixed value (e.g., 0.9 for Jaccard similarity) or a value com-
puted based on the query (line 5). The algorithm has two
steps.

Algorithm 1 : IRS Algorithm for a top-k query

1: Let k be the number of results requested;
2: Let wmax be the maximum weight of a string in the

dataset;
3: Let f ≥ 1 be a multiplication factor;
4: Let R← φ be the range-search-result set;
5: Let τ be the initial similarity threshold;
{Step 1: Computing initial candidates}

6: while size(R) < f · k do
7: R← ApproxRangeSearch(τ);
8: if size(R) < f · k
9: then Decrease τ ;

10: end while
{Step 2: Finalizing results}

11: Compute scores for elements in R and keep the first k;
12: Let τ1 be the minimum similarity for which

Score(τ1, wmax) > Score(R[k]);
13: if τ1 < τ then
14: R← ApproxRangeSearch(τ1);
15: Compute scores for elements in R and keep the first

k;
16: end if
17: Return R[1..k];

Step 1: Computing initial candidates (lines 6− 10).
The goal of this step is to compute at least f · k results,
where f ≥ 1 is a multiplication factor. We call a function
“ApproxRangeSearch” to run an approximate-string-range-
search algorithm of our choice, and find the strings that pass
the similarity threshold τ . Next, we decrease the similarity
threshold, depending on the number of results we got. This
step ends when we get at least f · k results.

Step 2: Finalizing results (lines 11−16). We compute
the score for each element computed in step 1, and keep the
first k elements ordered by their scores. Next, we want to
be certain that these k elements are indeed the best results.
Consider one element e that was not seen before, and it has
the maximum possible weight in the dataset. We compute
how similar e needs to be to the query in order to have
a better score than the current kth element. We use this
similarity as the new similarity threshold τ1 (line 12). If
τ1 < τ , we call the approximate-range-search function one

more time, using τ1 as the threshold (line 14). The more
results we got from step 1, the better the kth element will
be, and the tighter the similarity threshold τ1 will be.

ID String Weight Jaccard Score

1 abcd 0.10 1.00 1.10

2 abcde 0.20 0.75 0.95

3 abc 0.30 0.66 0.96

4 abce 0.20 0.50 0.70

5 ab 0.70 0.33 1.03

Figure 3: Example of results for given string “abcd”,
Jaccard similarity, k = 2.

Figure 3 shows the intuition behind the need for a second
step. The figure shows an example of the results for string
“abcd”. Suppose the first step returns the results with ids
between 1 and 4. The current top-2 results are 1 and 3. The
second step is needed in order to capture elements which
have a low similarity but a high weight, like element with id
5. The final top-2 results are 1 and 5.

Advantages and Limitations: The IRS algorithm has
the advantage that it can utilize any of the existing algo-
rithms for approximate-string range search. It is easy to
implement as it uses the range-search algorithm as a black-
box function. One main limitation of the algorithm is that
it needs to run multiple search queries, which may take a lot
of time. In addition, it is not easy to choose a good initial
similarity threshold τ (line 5) and decrease τ properly for
the next query (line 9).

4. SINGLE-PASS SEARCH ALGORITHM
There are many different index structures that can be used

to relax strings. In this paper, we use a q-gram inverted-

list index, built on the string collection. For each gram in
S, we have an inverted list of ids of strings containing this
gram. For instance, Figure 4(a) shows four strings with their
weights and Figure 4(b) shows the corresponding inverted
lists of 2-grams. The ids on each list are sorted in ascending
order. Without loss of generality, we assume that the as-
cending order of the string ids is identical to the descending
order of their weights. If not, we can map each string id to
a new id (a one-to-one mapping), so that the new string ids
have this property.

ID String Weight

1 ab 0.80

2 ccd 0.70

3 cd 0.60

4 abcd 0.50

5 bcc 0.40

(a) Dataset

ab cc cd bc

1 2 2 4

4 5 3 5

4

(b) Inverted lists

Figure 4: Example of gram inverted-list index.

We study how to answer a query by accessing the inverted
lists only once. (We assume an answer should share at least
one common gram with the given string.) A naive way to
traverse the lists would be to loop over the lists, reading
one element at a time from each list. During the traver-
sal, we maintain the information about the visited elements
(candidates) and a top-k buffer of the best k elements seen
so far. The algorithm maintains bounds on the score for
each candidate and stop when the top-k buffer cannot be
improved.

A better way of traversing the lists is to use a heap. The
algorithm is called “Single-Pass Search” (“SPS” for short).
It traverses the lists in a sorted order using a heap of the
current top elements of the lists. This traversal order has two
advantages: we do not have the overhead of maintaining the
candidate set, and we have more chances to skip elements.
Algorithm 2 shows the pseudo-code of the algorithm.

Algorithm 2 : SPS Algorithm for a top-k query

1: Let n be the number of grams in the query;
2: Let l[0..n − 1] be the lists of ids for the query grams;
3: Let g ← 1 be the frequency threshold;
4: Insert the top element on each list to a heap, H ;
5: Topk← φ;
6: while H is not empty do
7: Let T be the top element on H ;
8: Pop from H those elements equal to T ;
9: Let p be the number of popped elements;

10: if p ≥ g then
11: if Score(T) > Score(kth in Topk) then
12: Insert T into Topk and pop the last one;
13: Recompute threshold g;
14: if g > n
15: then break;
16: end if
17: Push next element (if any) of each popped list to

H ;
18: else
19: Pop additional g − p− 1 elements from H ;
20: Let T ′ be the current top element on H ;
21: for each of the g − 1 popped lists do
22: Locate its smallest element E ≥ T ′ (if any);
23: Push E to H ;
24: end for
25: end if
26: end while
27: Return the elements in Topk;

We first initialize the frequency threshold g (line 3). The
algorithm maintains a cursor for each list pointing to the
current element. The cursor is initially set to the first ele-
ment on the list. We maintain a heap, H , of the elements
pointed by the cursors on the lists (line 4). We pop an el-
ement from the heap, process it, and push another element
of this list to the heap. We traverse the lists by pushing and
popping elements to and from the heap (lines 6 − 26). If
a string id appears on multiple lists, the heap has multiple
copies of that id. Whenever we pop one element from the
heap, we pop all its copies (line 8). In this way we know the
total frequency, p, of the string id on the lists (line 9). Then,
the element is processed, and retained in the top-k buffer,
or discarded. There is no need for maintaining a candidate
set (lines 10− 25).

The first k elements visited during the traversal become
the top-k candidates, and are added to the top-k buffer (line
12). Next, we compute what new frequency threshold g a
new element needs to have in order to have a better score
than the kth element in the buffer (line 13). We describe
how to compute the frequency threshold g later in this sec-
tion. If a new element has a frequency p less than the fre-
quency threshold g, we pop additional g − p − 1 elements
from the heap, and move the cursor on each popped list to
the first element greater than or equal to the current top on

the heap (lines 19 − 24). (Similar intuition has been used
in the MergeSkip algorithm proposed in [9].) The algorithm
stops when reaching the last element on each list, or when
the frequency threshold g is greater than the number of in-
verted lists n.

We use the example in Figure 5 to show the intuition
behind the skipping step. For simplicity, we use the number
of common grams as similarity between two strings and a
scoring function based only on the similarity. The figure
shows a snapshot of the element-id lists after element 10
has been read from lists 1 and 2, and retained as the top-1
candidate. Currently the frequency threshold g is 3, thus an
element needs to appear at least 3 times in order to be better
than the current top-1. Next, the algorithm reads element 20
from the heap. As its frequency p is 1, the algorithm reads
one more element from the heap. After that, the current
head of the heap is 40, and the algorithm jumps on lists 1
and 2 to the element 40. In this way the algorithm skips
many elements on lists 1 and 2. All the skipped elements
could appear at most 2 times on the lists, while the frequency
threshold is 3. Thus they cannot be the top-1 answer.

Figure 5: Skipping elements during the traversal of
the lists in the SPS algorithm.

Computing Frequency Threshold: Given the score
of the kth candidate in the buffer, γk, we need to compute
a frequency threshold, g, that an element needs to have in
order to have a better score. First, the largest weight of
the last seen weights on the lists is the maximum weight
that an unseen element could have. We denote it by ηmax.
Next, using the definition of the scoring function, γk, and
ηmax, we derive the minimum similarity an element needs to
have in order to be better than the current kth element. We
denote that by τmin. For example, if the scoring function is
Equation 1, then τmin can be computed as:

τmin =
γk − β · ηmax

α
.

Given τmin, we can compute g using a formula derived
from the definition of the similarity function. Formulas for
deriving the frequency threshold for a given similarity have
been defined in [9] for the common similarity functions. For
example, if the similarity function is Jaccard, g can be com-
puted as follows:

g = max(τmin · gr,
gr + gmin

1 + 1/τmin

),

where gr is the number of grams in the query, and gmin is
the minimum number of grams of a string in the collection.

Improvement by Separating Lists The algorithm can
be improved by partitioning the lists into a set of long lists
and a set of short lists. It treats the long lists separately,

since these lists could take a lot of time to traverse. The
algorithm only searches in them for elements found on those
short lists. A similar idea of treating the long lists differently
was proposed in algorithms in [12, 9]. We use a heap to
traverse the short lists. Whenever an element in the short
lists has a frequency at least g − nlong, where nlong is the
number of long lists, we can search for this element in each
of the long lists by doing a binary search. We can use a
formula derived in [9] for deciding nlong .

Two-Phase Algorithm: We can combine the IRS algo-
rithm and the SPS algorithm. This new algorithm is called
“two-phase” algorithm (2PH). In the first phase, we execute
a single range search with a tight similarity threshold, τ . In
the second phase, we run the SPS algorithm, but the ini-
tial bound on the number of common grams is computed
based on the records retrieved in phase 1. The algorithm is
based on the following two observations. (1) Retrieving the
records very similar to the query could be done efficiently
using existing range-search algorithms. (2) The SPS algo-
rithm is efficient since it can skip many elements. Still, a
low initial frequency threshold makes the algorithm process
a lot of elements at the beginning. The initial top-k can-
didates computed in phase 1 could give as a higher initial
frequency threshold. Moreover, the traversal might stop ear-
lier since the records very similar to the query have already
been considered.

5. EXPERIMENTAL EVALUATION
In this section we present our experimental evaluation of

the proposed algorithms for string relaxation. We used two
real datasets.
• IMDB Actor Names: It consisted of actor names, and

the numbers of movies they played in. The data was
downloaded from the IMDB website1. There were 1.2
million names, with the average length of 15. We log-
normalized the number of movies an actor played in and
used it as the weight of the actor.
• WEB Corpus Word Grams: It came from the LDC Cor-

pus set at the University of Pennsylvania2. This dataset,
contributed by Google Inc., contained sequences of En-
glish words and their observed frequency counts on the
Web. The raw data was around 30GB. We randomly
chose 2.4 million sequences, with the average length of
20. We log-normalized the frequency of the sequence and
used it as its weight.

We used q = 3 for the gram length. For each dataset,
we constructed 100 queries by randomly selecting strings
from the dataset. All the algorithms were implemented us-
ing C++ (GNU compiler) and run on a Intel 2.40GHz PC
with 2GB main memory, running a Ubuntu Linux operating
system.

5.1 Efficiency of String Relaxation
Algorithms

We evaluated the performance of the string relaxation al-
gorithms for top-10 queries using the IMDB and Web Cor-
pus datasets. We considered the scoring function in Equa-
tion (1), with α = 1 and β = 1. We ran each query 5 times
and used its average running time in order to compute ac-
curate performance numbers.

1http://www.imdb.com/interfaces
2http://www.ldc.upenn.edu/Catalog, number LDC2006T13

Figure 6(a) shows the average query time of the SPS top-
k string relaxation algorithm on the IMDB dataset using
the Jaccard similarity. The IRS algorithm performed very
poorly and we did not plot its running time. Even for the
optimal initial threshold, the IRS algorithm needed around
5 seconds to compute the top-10 results for 1.2 million en-
tries. This result was the best performance of the algorithm
when we used the optimal initial similarity threshold and
ran a single range search, and most time was spent on the
post-processing phase. The performance of the algorithm
was even worse if we did not use the optimal initial thresh-
old. The SPS and 2PH algorithms have similar performance.
For the 2PH algorithm we heuristically computed the initial
threshold as being equal to the number of grams in the query.
They needed around 5 ms to answer a top-10 query on 1.2
million entries. The time increased slowly as the dataset size
increased.

0.2 0.4 0.6 0.8 1.0 1.2

Dataset Size (millions)

1

2

3

4

5

6

T
im

e
 (

m
s
)

SPS

(a) Jaccard similarity

0.2 0.4 0.6 0.8 1.0 1.2

Dataset Size (millions)

4

8

12

16

20

T
im

e
 (

m
s
)

SPS

(b) Normalized edit similar-
ity

Figure 6: Average running time for top-10 string
relaxation (IMDB).

Figure 6(b) shows the results for the same setting but us-
ing the normalized edit similarity. The relative performance
order of the algorithms is preserved, but all of them needed
more time to compute the top-10 results than in the case
we used Jaccard. This behavior is due to the fact that for
Jaccard, from the number of common grams between two
strings we could compute their exact similarity. For the
normalized edit similarity, we computed bounds on the sim-
ilarity, since computing the exact similarity is expensive. We
observed similar results on the WEB Corpus dataset. Due
to space limitations, we do not present the results.

5.2 Benefits of Skipping Elements
In this experiment, we analyzed how the skipping opera-

tion affects the running time of the single-pass search algo-
rithms. We also ran the SPS algorithm for various subsets of
the IMDB dataset with different sizes, with the skipping fea-
ture disabled. Figure 7(a) shows the average running time
for the SPS algorithm with and without the skipping fea-
ture, using the Jaccard similarity. In the figure, the asterisk
(*) near an algorithm name means that the algorithm had
the skipping feature disabled. We can see that the skip-
ping operation improves the performance. For example, the
SPS algorithm needed around 40 ms if no skipping was per-
formed, while it only needed around 5 ms with skipping (on
1.2 million entries). Figure 7(b) shows the results when we
used the normalized edit similarity. The skipping operation

helps to improve the performance of the algorithms for this
function as well.

0.2 0.4 0.6 0.8 1.0 1.2

Dataset Size (millions)

0

10

20

30

40

50

T
im

e
 (

m
s
)

SPS
SPS*

(a) Jaccard similarity

0.2 0.4 0.6 0.8 1.0 1.2

Dataset Size (millions)

0

5

10

15

20

25

T
im

e
 (

m
s
)

SPS
SPS*

(b) Normalized edit similar-
ity

Figure 7: Average running time for top-10 string
relaxation (IMDB).

5.3 Effect of the Initial Threshold for the 2PH

Algorithm
We evaluated how the initial threshold affects the per-

formance of the 2PH algorithm. We randomly generated
3 top-10 queries and ran the 2PH algorithm for different
initial thresholds. We used the WEB Corpus dataset and
normalized edit similarity. We converted the initial similar-
ity threshold needed by the 2PH algorithm to a bound on
the number of common grams, g, using the formulas in [9].
Figure 8(a) shows the average running times for the three
queries, using different bounds for g. For each query, the
first bar represents the execution time for only the second
phase of the 2PH algorithm, i.e., we mainly ran the SPS al-
gorithm. The subsequent bars represent the running times
with g between the number of grams in the query and 1. We
can see how the initial threshold affected the performance of
the algorithm, and why the algorithm can have a better time
than the SPS algorithm. In particular, for the third query,
when we decreased the similarity threshold, the overall time
first decreased, then increased.

Q1 Q2 Q3

Queries

0

10

20

30

40

T
im

e
 (

m
s
)

(a) Running times for the
2PH algorithm on 3 queries,
with different initial thresh-
olds (2.4 million entries).

0.4 0.8 1.2 1.6 2.0 2.4

Dataset Size (millions)

20

40

60

80

100

T
im

e
 (

m
s
)

SPS
2PH
2PH Opt

(b) Average running time for
various dataset sizes.

Figure 8: Influence of the initial threshold for the
2PH algorithm on the WEB Corpus dataset (normal-
ized edit similarity).

For each query in our workload, we computed the op-

timal g bound for the 2PH algorithm as follows. We ran
each query with a g value between the number of grams in
the query and 1, and selected the bound with the minimum
running time. Figure 8(b) shows the average running time
of the 2PH algorithm with a heuristically computed initial
threshold (equal to the number of grams in the query) and
the optimal initial threshold (shown as “2PH Opt” in the
figure). This experimental result shows that the 2PH algo-
rithm can indeed decrease the running time when a good
initial threshold is used.

6. CONCLUSIONS
In this paper, we formulated the problem of approximate

ranking queries in string collections, in which a string is
ranked based on its weight and similarity to the query string.
Answering such queries is important to many applications
such as record linkage where there is a mismatch between a
user query and the representations of the entities the user is
looking for. We developed efficient algorithms for answering
ranking queries by considering several commonly used simi-
larity functions. Our extensive experiments on real datasets
showed that these algorithms can answer ranking queries
efficiently on large datasets.

7. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In VLDB, pages 918–929, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In WWW, pages 131–140, 2007.

[3] R. Fagin. Combining fuzzy information from multiple
systems. In PODS, pages 216–226, 1996.

[4] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS,
2001.

[5] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,
N. Koudas, S. Muthukrishnan, and D. Srivastava.
Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[6] M. Hadjieleftheriou, A. Chandel, N. Koudas, and
D. Srivastava. Fast indexes and algorithms for set
similarity selection queries. In ICDE, pages 267–276,
2008.

[7] I. Ilyas, G. Beskales, and M. A. Soliman. A Survey of
Top-k Query Processing Techniques in Relational
Database Systems. ACM Computing Surveys, 2008.

[8] N. Koudas, S. Sarawagi, and D. Srivastava. Record
linkage: similarity measures and algorithms. In
SIGMOD Conference, pages 802–803, 2006.

[9] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE,
pages 257–266, 2008.

[10] C. Li, B. Wang, and X. Yang. VGRAM: Improving
performance of approximate queries on string
collections using variable-length grams. In VLDB,
pages 303–314, 2007.

[11] G. Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, 2001.

[12] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In SIGMOD Conference, pages
743–754, 2004.

