Supporting Location-Based Approximate-Keyword Queries

Sattam Alsubaiee
University of California, Irvine

salsubai@ics.uci.edu

ABSTRACT

Many Web sites support keyword search on their spatial
data, such as business listings and photos. In these systems,
inconsistencies and errors can exist in both queries and the
data. To bridge the gap between queries and data, it is im-
portant to support approximate keyword search on spatial
data. In this paper we study how to answer such queries effi-
ciently. We focus on a natural index structure that augments
a tree-based spatial index with capabilities for approximate
keyword search. We systematically study how to efficiently
combine these two types of indexes, and how to search the
resulting index to find answers. We develop three algorithms
for constructing the index, successively improving the time
and space efficiency by exploiting the textual and spatial
properties of the data. We experimentally demonstrate the
efficiency of our techniques on real, large datasets.

Categories and Subject Descriptors

H.2.8 [Database Management|: Database Applications—
spatial databases and GIS; H.3.1 [Information Storage
and Retrieval]: Content Analysis and Indexing

General Terms

Algorithms, Performance

Keywords
Approximate Keyword Search, Spatial Data

1. INTRODUCTION

An increasing number of Web sites support location-based
keyword search on their data objects such as business list-
ings and photos. They accept queries consisting of two con-
ditions: a set of keywords and a spatial location. The goal
is to find objects with these keywords close to the location.
Such a query is called a spatial-keyword query [10]. For in-
stance, there are several local-search Web sites, such as Bing
Maps, Google Maps, Yahoo! Local, and Yelp.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ACM GIS’ 10, November 2-5, 2010. San Jose, CA, USA

Copyright 2010 ACM 978-1-4503-0428-3/10/11 ...$10.00.

Alexander Behm
University of California, Irvine

abehm@ics.uci.edu

Chen Li

University of California, Irvine
chenli@ics.uci.edu

In these systems, inconsistencies and errors can exist in
user queries and data. For instance, a user might be looking
for a restaurant called Alouette close to New York. The
following is the corresponding query:

Q1: (Alouette) near (New York).

The Web site returns listings close to New York that have
the keyword Alouette. Sometimes, users may not know
the exact spelling of the entities they are looking for. For
instance, a user could have heard of the restaurant by word-
of-mouth but is unfamiliar with its exact spelling, and issues
the following query with a typo:

Q' (Aloette) near (New York).

Errors can exist in data as well. For instance, Flickr sup-
ports location-based photo search.! Consider a query that
asks for photos of Alcatraz close to San Francisco:

Q2: (Alcatraz) near (San Francisco).

Since Flickr photos are manually uploaded and tagged by
users, the title or the description of a photo may have spelling
errors. Query Q2 may not be able to find a photo with the
mistyped title Alkatraz.

Finding relevant answers to such queries is important.
Unfortunately, most existing location-based search engines
could not provide correct answers to the query @} even with
a single typo (as of July 1, 2010). One simple solution to
this problem on a spatial dataset is to build a collection of
keywords from the dataset. For a mistyped keyword, we find
words from the collection that are similar to the keyword.
We use these similar keywords to suggest another query or
find objects with these keywords. The main drawback of this
approach is that it does not consider the location condition
when relaxing the mistyped keyword.

Contributions: In this paper, we study how to sup-
port approximate keyword search on spatial data. Answer-
ing such queries efficiently is critical to these Web sites
to achieve a high query throughput to serve many concur-
rent users. Although there are studies on both approxi-
mate keyword search and location-based search, the prob-
lem of supporting both types of search simultaneously has
received little attention. To answer such queries, a natu-
ral index structure is to augment a tree-based spatial index
with approximate-string indexes such as a gram-based in-
verted index or a trie-based index. The main focus of this
work is a systematic study on how to efficiently combine

"http://www.flickr.com/map

these two types of indexes, and how to search the resulting
index (called LBAK-tree) to find answers.

We develop three algorithms in this context. First, in Sec-
tion 3, we show a basic algorithm that selects a fixed level of
nodes in the spatial tree to store approximate-string indexes.
(A brief description of a system prototypes using this ap-
proach is presented in [1].) Second, in Section 4, we develop
a cost-based algorithm that judiciously selects a set of nodes
in the tree to store approximate indexes. Our cost model
utilizes the spatial distribution of objects within each node
to build the index structure with a space budget. Third, in
Section 5 we continue improving the solution by exploiting
the frequency distribution of keywords. We show how to
further reduce the index size without sacrificing query time.
We have conducted a comprehensive experimental study to
evaluate the proposed techniques. Our results (Section 6)
show the efficiency and scalability of these optimizations.

1.1 Related Work

Spatial keyword search: There are several studies on
answering spatial queries for exact matching of keywords [16,
13, 5, 10, 7, 6, 15]. Chen et al. [5] used separate indices for
the spatial and textual information. Zhou et al. [16] sug-
gested a hybrid index that combines spatial and inverted
indexes. They use an R*-tree [2] and build inverted indexes
for the keywords at the leaf nodes; or use an inverted index
to store the keywords and build an R*-tree for each keyword.
These techniques do not simultaneously use the spatial and
the textual information for pruning. Other studies [10, 7,
6, 15] used the textual and the spatial information conjunc-
tively. They augment a tree-based spatial index with tex-
tual information in each node. Our work complements these
studies by allowing approximate keyword matching.

Approximate string search: We refer to the prob-
lem of conjunctive keyword search with relaxed keywords
as approzximate keyword search. An important subproblem
of approximate keyword search is that of approximate string
search, defined as follows. Given a collection of strings, find
those that are similar to a given query string. There are two
main families of approaches to answer such queries. (1) Trie-
based method: The string collection is stored as a trie (or a
suffix tree). To answer an approximate string query, we tra-
verse the trie and prune subtrees that cannot be similar to
the query. Popular pruning techniques use an NFA or a dy-
namic programming matrix with backtracking. We refer the
reader to [12] for more details. (2) Inverted-index method:
Its main idea is to decompose each string in the collection
to small overlapping substrings (called grams) and build an
inverted index on these grams. More details on fast indexing
and search algorithms can be found in [9, 11, 12].

Spatial approximate-keyword search: Yao et al. [14]
proposed a structure called MHR-tree to answer spatial
approximate-keyword queries. They enhance an R-tree [8]
with min-wise signatures at each node to compactly repre-
sent the union of the grams contained in objects of that sub-
tree. They then use the concept of set resemblance between
the signatures and the query strings to prune branches in the
tree. The main advantage of this approach is that its index
size does not require a lot of space since the min-wise signa-
tures are very small. However, the method could miss query
answers due to the probabilistic nature of the signatures,
while our approach can guarantee to find all true answers.
In Section 6, we compare these two solutions experimentally.

2. PROBLEM FORMULATION

The problem of approximate keyword search on spatial
data can be formulated as follows. Consider a collection of
spatial objects 01, ..., 0n, each having a textual description
(a set of keywords) and a location. A spatial approximate-
keyword query Q = (Qs,Q+) consists of two conditions: a
spatial condition Qs such as a rectangle or a circle, and
an approximate keyword condition (): having a set of k
pairs {{w1,d1), (w2, d2), ..., (wk,dk)}, each representing a
keyword w; with an associated similarity threshold §;. The
similarity thresholds refer to a similarity measure such as
edit distance, Jaccard, etc., which could be different for each
keyword. Our goal is to find all objects in the collection that
are within the spatial region Qs and satisfy the approximate
keyword condition Q;. We focus on conjunctive approximate
keyword queries; thus, an object satisfies the approximate
keyword condition if for each keyword w; in Q¢, the object
has a keyword in its description whose similarity to w; is
within the corresponding threshold d;. We mostly discuss
range queries but our solutions can be easily adapted to
support nearest-neighbor queries.

We briefly review the basics of answering queries with spa-
tial conditions, and answering approximate string queries.
Queries with a spatial condition are typically supported by
a tree-based index such as an R*-tree, KD-tree, Quad-tree,
etc. We assume a tree-based spatial index as a basis for our
work, and we often use the R*-tree as a representative tree-
based spatial access method. To support the approximate
keyword condition, we use an index for approximate string
search. Most trie-based indexes are specific to edit distance
and its variants, and do not support other similarity mea-
sures such as Jaccard. An inverted-index approach [11] sup-
ports a family of similarity metrics, such as edit distance,
Jaccard, etc. The two methods differ in their performance
characteristics, whose specifics are independent of our pro-
posed framework. We focus on the inverted-index approach,
though we can as well choose a trie-based approach.

3. BASIC INDEX AND SEARCH

In this section, we introduce a basic index structure and
the corresponding search algorithm for answering location-
based approximate-keyword (LBAK) queries.

3.1 The LBAK-Tree

The main idea of the basic index (called “LBAK-tree”) is
to augment a tree-based spatial index with capabilities for
approximate string search and keyword search. We use ap-
proximate string search to identify for each query keyword
those strings that are similar. Once we have identified simi-
lar keywords, we use the keyword-search capability to prune
search paths. For example, Figure 1 shows an LBAK-tree,
e.g., an R*-tree that has been enhanced to support spatial
approximate-keyword queries. To support keyword search
we choose some nodes to store the union of keywords con-
tained in objects of their subtree. To support approximate
string search, we select nodes in the tree to build approxi-
mate string indexes (called “approximate indexes” hereafter)
on their stored keywords. In this example and later discus-
sions, we use a gram-based inverted index to perform ap-
proximate string search, but our solutions naturally extend
to other types of approximate string indexes.

Fixed-level solution: A simple way to choose nodes to

place approximate indexes on is the following. We choose
one level L for which we construct approximate indexes at
each node. The challenge is to choose a level L that provides
good query performance. Notice that at each tree node, its
stored keywords are the union of keywords of the objects
in its subtree. If multiple objects have the same keyword,
this keyword is stored only once in their common ancestors.
There is a trade off between the average query time and
the size of the approximate indexes. As we move L down
the tree, the total number of keywords on which we need
to build approximate indexes increases. Thus the total size
of the approximate indexes will increase. Meanwhile, the
performance of finding similar keywords from an approxi-
mate index is related to the size of the index. Typically the
smaller the index is, the faster its lookups are. On the other
hand, doing many approximate-keyword lookups on small
indexes may increase the total running time as well.

N1

Q «—+— S-Nodes
Ce . -

= Tm]

SA-Nodes

|
=1

NS, N9 N10, N11 N1 N13 N14, N15
B E B EE B B e
& 4 4 4 4 3 4 | 4

SK-Nodes

N2
Level L Ef

= m

=m

— Keywords TﬂT Approximate index Spatial object
Figure 1: The LBAK-tree with approximate indexes
at one level, and nodes enhanced with keywords.

3.2 Search Algorithm

Here, we discuss the search procedure for answering spa-
tial approximate-keyword queries. We classify the LBAK-
tree nodes into three categories:

e S-Nodes do not store any textual information such as
keywords or approximate indexes, and can only be used
for pruning based on the spatial condition.

e SA-Nodes store the union of keywords of their subtree,
and an approximate index on those keywords. We use
SA-Nodes to find similar keywords, and to prune subtrees
with the spatial and approximate keyword conditions.

e SK-Nodes store the union of keywords of their subtree,
and prune with the spatial condition and its keywords.
Note that we must have previously identified the relevant
similar keywords once we reach an SK-Node.

Algorithm outline: Let QQ be a query with a spatial con-
dition Qs and an approximate-keyword condition Q; with k
keywords. The algorithm traverses the tree top-down and
performs the following actions at a tree node depending on
the node type. At an S-Node, the algorithm only relies on
the spatial information of the node to decide which children
to traverse. Once the algorithm reaches an SA-Node, it uses
the node’s approximate index to find similar keywords. For
each keyword w; in Q¢, the algorithm maintains a set of key-
words C; that are similar to w; according to its similarity
threshold §;. Assuming we use the AND-semantics, a node

is pruned if one of the query’s C; sets is empty. Otherwise,
we propagate the list C = C,...,Cx downward and use it
for further pruning. In particular, at each SK-Node n, for
each keyword w; in @, the algorithm intersects its similar
keywords C; propagated from the parent with the stored
keywords of n. The node n can be pruned if one of the
similar keyword-sets C; has an empty intersection with the
node’s keywords. Otherwise, the algorithm passes those in-
tersection sets of similar keywords to n’s children for further
traversal. At a leaf node, the algorithm adds to the answer
set all the node’s objects that satisfy the condition Qs and
have a non-empty intersection between their keywords and
each of the propagated similar-keyword sets from the query.

Pseudo-code: Let us examine the pseudo-code for LBAK-
Search in Algorithm 1. Note that the algorithm invokes
several helper procedures, e.g. InitSimilarKeywordSets, Proc-
SNode, etc., defined in Algorithms 2, 3, 4 and 5. In later
sections, we will override these helper procedures, but the
procedure in Algorithm 1 remains the same.

The input of Algorithm 1 is a query Q = (Qs, Q:) and
an LBAK-tree root . We initialize a list C of k similar-
keyword sets (line 2), where k is the number of keywords in
Q:. We maintain a stack S to traverse the tree. Initially,
we push the root r and the list C' to the stack (line 4). We
start traversing the tree by popping the pair (n, C') from the
stack (line 6). If n is not a leaf node, then all n’s children
that satisfy the spatial condition will be investigated (lines
7-9). Depending on the type of the node we invoke a helper
procedure to process it (lines 10-18):

For an S-Node (lines 11-12), we only rely on the spa-
tial condition to do pruning, and push the pair (n;, C) to
the stack S (within Algorithm 3). For an SA-Node (lines
13-14), we use its approximate index to find similar key-
words for each query keyword as shown in Algorithm 4. We
call GetSimKwds (w;, d;) to get w;’s similar keywords, for
i = 1,...,k, and store them in w;’s corresponding similar-
keyword set (. If at least one similar keyword is found for
each keyword in @, then the pair (n;, C') is pushed to the
stack S for future investigation. For an SK-Node (lines 15-
16), we compute the intersection G; between n;’s keywords
and the similar-keyword set C;. If all the intersection sets
are not empty, then the pair (n;, G) is pushed to S to be
examined later (Algorithm 5). Finally, when we reach a leaf
node, we add its objects that satisfy the two conditions Q:
and Qs to the results (lines 20-26).

A
S-Node
B
SA-Node
{barbarini, barbarino, e
hotel, restaurant, ...}
c D
SK-Node SK-Node

{barbarino, hotel, ...} {barbarini, hotel, restaurant, ...}

Figure 2: Exemplary portion of an LBAK-tree with
approximate indexes at a fixed level.

Example: Figure 2 shows a portion of an LBAK-tree.

Algorithm 1: LBAKSearch

Algorithm 3: ProcSNode

Input : A query Q = (Qs, @), with Q¢ having k
pairs {{(w1,01), ..., (wk,dk)} associating a
keyword w; with its similarity threshold d;;
An LBAK-tree root r;

Output: A set R of all objects satisfying Qs and Qy;

1 Result set R < 0;

2 C + InitSimilarKeywordSets(r, Q+);
3 Initialize an empty stack S;

4 S.push (r,C);

5 while S # () do

6 (n,C) + S.popQ;
7 if n is not a leaf node then
8 foreach child n; of n do
9 if n; does not satisfy Qs then continue;
10 switch n;.type do
11 case S-Node:
12 | S + ProcSNode(n;, Q¢+, C, S);
13 case SA-Node:
14 | S + ProcSANode(n;, Q¢, C, S);
15 case SK-Node:
16 | S + ProcSKNode(n;, Q¢+, C, S);
17 endsw
18 endsw
19 end
20 else // leaf node
21 foreach object 0; of n do
22 if o; satisfies Qs and Q; then
23 | R.add(0;);
24 end
25 end
26 end
27 end
28 return R

We wish to find objects in New York with keywords similar to
barbarene and resturant, expressed as: Q = ({New York};
{(barbarene, 2), (resturant,2)}). Notice that the query
keywords have typos. We use edit distance as the similarity
measure, and 2 as the similarity threshold for both keywords.
Let us assume that nodes A, B, C, and D satisfy the spatial
condition New York. Throughout the traversal of the tree,
we always check the spatial condition. We focus on how
to utilize the approximate indexes and stored keywords to
prune irrelevant subtrees. At the S-Node A, we only rely on
the spatial condition for pruning. When we reach the SA-
Node B, we probe its approximate index to find keywords
similar to barbarene and resturant according to the edit-
distance threshold of 2. We can find two keywords similar
to barbarene (namely, barbarini and barbarino), and one

Algorithm 2: InitSimilarKeywordSets
Input : Root r of an LBAK-tree;

Qt = {<w17 61>7 B <wk7 5k>}
Output: A list of similar-keyword sets
0201,...7Ck;

1 C«+{0,0,...,0} // k empty sets
2 return C

Input : S-Node n;
Qv = {<w17 61>7 () <wk7 6k>}7
Similar-keyword sets C' = C1, ..., Cy;
Stack S;
Output: Stack S;
1 S.push (n,C);
2 return S

Algorithm 4: ProcSANode
Input : SA-Node n;
Qr = {{w1,61), ..., (wk, 0k) };
Similar-keyword sets C' = C1, ..., Cy;
Stack S;
Output: Stack S;

for i=1 to k do
| C; + n.GetSimKwds (w;, 6;);
end
if all C;’s # () then
| S.push (n,0);
end
return S

O CUR W N

keyword similar to resturant (namely, restaurant). Once
we visit the SK-Nodes C' and D, we intersect their stored
keywords with {barbarini, barbarino} and {restaurant},
respectively. Clearly, we can prune node C because it does
not have the keyword restaurant. Since node D has the
keywords barbarini and restaurant, we traverse its chil-
dren. We repeat the process until we find the answers.

4. PLACING APPROXIMATE INDEXES AT
VARIABLE LEVELS

In this section we study how to improve the solution de-
scribed in Section 3 based on the following observations.
First, our experiments showed that around 90% of the query
time is spent on approximate-index lookups. Therefore, op-
timizing the placement of approximate indexes in the tree
can greatly improve the average query time.

Second, the fixed level L is chosen without considering the
local spatial distribution of the objects within each node. In

Algorithm 5: ProcSKNode
Input : SK-Node n;
Qv = {<w17 61>7 () <wk7 6k>}7
Similar-keyword sets C' = C1, ..., Cy;
Stack S;
Output: Stack S;

1 for i=1 to k do

2 | G; < n.keywords N Cj;
3 end

4 if all G;’s # 0 then

5 G<—G17G2,...7Gk;

6 S.push (n,G);

7 end

8 return S

many datasets, the spatial distribution of objects is skewed,
and nodes at the same level can greatly vary in size. For in-
stance, consider a sparse node n; in an R*-tree, e.g., a desert
area in Nevada, where very likely a query overlaps with only
few of ni’s children. When traversing the tree through ni,
it is better to rely only on the very selective spatial condi-
tion for pruning without considering its textual information.
Thus, we prefer to build the approximate indexes at the de-
scendants of n1, where the local pruning power of the spatial
condition becomes weaker. Our hope is that a query will
only probe a few, small approximate indexes below ni, if
any. On the other hand, consider a dense node naz, e.g., one
representing New York city, where a query region is likely to
overlap with many of na’s children. If we build approximate
indexes for ns’s children, a query will likely need to probe all
of them, which would be more expensive than probing one
big approximate index at nz. Therefore, we would rather
build a single approximate index at n2 to avoid the cost of
many approximate-index lookups.

Our new method presented in this section allows the ap-
proximate indexes to appear at different levels in the tree
as shown in Figure 3. The new method reduces both the
overall space cost of the index and the average query time.

S-Nodes

SA-Nodes

T Approximate index

— Keywords Spatial object

Figure 3: The LBAK-tree utilizing the local spatial
distribution of objects.

4.1 Selecting Nodes for Approximate Indexes

Our problem is finding the optimal set of nodes that should
have approximate indexes. It can be formulated as the fol-
lowing optimization problem: “Given an R*-tree and a space
budget, choose nodes from the tree to store approximate in-
dexes, such that the average query time of a given workload
is minimized.” We can show that this problem is NP-hard
by a reduction from the Knapsack problem to this problem,
where each approximate index has a value (the average query
time improvement that we obtain by building the index) and
a weight (the space cost of the index).

Algorithm outline: We develop a greedy algorithm,
called SelectSANodes, that traverses the tree top-down and
tries to push approximate indexes down the most promising
paths. The algorithm maintains a priority queue of nodes to
be visited. The priority of a node n is the benefit of building

multiple approximate indexes at its children as compared to
building a single index at n. A detailed explanation of how
to compute this benefit is presented in Section 4.2. For each
visited node n, if the benefit of building multiple approxi-
mate indexes at n’s children is negative, then the algorithm
selects n to be an SA-Node, and it will not traverse its chil-
dren. If the algorithm reaches a leaf node, it immediately
selects the leaf to be an SA-Node. The algorithm terminates
when the space budget is exhausted or there is no more ben-
efit to pushing approximate indexes down the tree.

Pseudo-code: We now walk through the pseudo-code of
SelectSANodes as shown in Algorithm 6. We use W, to de-
note the set of stored keywords at node n. The input of the
algorithm is an R*-tree root r and a space budget S. We as-
sume that the space budget is large enough to at least build
an approximate index on the root’s keywords W,. We main-
tain a priority queue H of nodes to visit, ordering the nodes
descending by their benefit. Initially, we call GetBenefit (r)
to obtain the benefit of storing the approximate indexes at
r’s children (line 3), and push r with its benefit to the queue
(line 4). The algorithm starts traversing the tree by popping
the pair with the highest benefit to (n, B) (line 6). Next,
we call GetSpaceCost (W,,,) to compute the cost of building
multiple approximate indexes at n’s children (lines 7-10).
We choose to build a single approximate index at n, and ad-
just the space budget S accordingly if one of the following
is true: n is a leaf node, there is not enough space to build
multiple approximate indexes at n’s children, or there is no
benefit of building multiple approximate indexes at the chil-
dren (lines 11-13). Otherwise, we push n’s children to the
queue for further evaluation (lines 14-19).

Algorithm 6: SelectSANodes
Input

: An R*-tree root r;

A space budget S;

Output: A set of nodes R to build approximate
indexes on;

1 Result set R <+ 0;

2 Priority Queue H <+ 0;

3 B < GetBenefit(r);

4 H .push (r, B);

5 while H # () do

(n,B) «+ H.popQ;

Se < 0; // space cost of children
foreach child n; of n do

| Sc + Sc + GetSpaceCost (Wy,;);
10 end

11 if n is aleaf node or S <= S; or B <=0 then

© 0w

12 R.add(n);

13 S <+ S— GetSpaceCost (W5,);
14 else

15 foreach child n; of n do

16 B; < GetBenefit(n;);
17 H .push (ns, B;);

18 end

19 end

20 end

21 return R

The search algorithm for answering queries based on an
index built with SelectSANodes is the same as the one for
the fixed-level solution, i.e., Algorithm 1 with the helper
Algorithms 2, 3, 4, and 5.

4.2 Estimating Benefits

In this section, we develop a cost model for algorithm Se-
lectSANodes to estimate the benefit of pushing approximate
indexes down the tree based on the expected size overhead
and lookup-time improvement. Recall that we use the ben-
efits to order the nodes in the priority queue.

Benefit of a node: Given a node n and its m children
ni,...,Nm, the benefit of n, denoted as b(n), is determined
by the ratio of the lookup-time difference of a single ap-
proximate index at n and multiple approximate indexes at
n’s children, to their size difference. The following equation
expresses this idea:

b(n) = (1)

where “pTime” is the average query time of probing an ap-
proximate index at the parent, “cTime” denotes this time
if the indexes were built at the children, and “pSpace” and
“cSpace” are the corresponding space costs of the indexes.
Let W, denote the set of stored keywords at node n,
(W) denote the size of an approximate index on keywords
W, and t(W,) denote the average lookup time for that ap-
proximate index. We define the benefit of node n as follows:

pTime(n) — cT'ime(n)
|[pSpace(n) — cSpace(n)|’

S () < (W)
(7

We weight the lookup time for a node m by p(n), which
denotes the probability of n satisfying the spatial condition
of a query in a workload.

Space cost of an approximate index: Since the main
space cost of a gram-based approximate index is the inverted
lists, we focus on estimating their size.

Suppose we use g-grams in the approximate indexes for
a positive integer q. Each keyword w to be inserted into
the approximate index yields |w| — g+ 1 g-grams. Let G(w)
be the bag of grams generated for w. For every gram in
G(w), we insert one element into its corresponding inverted
list. Let o be the size of each inverted-list element. The
keyword w contributes at most (Jw| — ¢+ 1) x o bytes to the
size of the inverted lists. Note that this estimate is an upper
bound on w’s size contribution because we remove duplicate
string ids from inverted lists. Thus, we estimate the size of
an approximate index on a set of keywords W as:

s(W)=|W|*(A—qg+1)*o0, 3)

where A is the average keyword length of a particular dataset.

Lookup time of an approximate index: The lookup
time of an approximate index is a function of its size. We
have experimentally determined that the cost of querying
an approximate index is linear in the number of keywords.
Table 1 shows the experimental data underlying this con-
clusion. We built four approximate indexes of different sizes
(first column), and ran a workload of queries against them
to determine the average lookup time (second column). In
the third column we computed the slope of the line go-
ing through the point represented by the first row and the
other corresponding point. Since the slope is roughly con-
stant for different index sizes, we conclude that the average
approximate-index lookup time grows linearly with its size.
Thus, we can estimate the average lookup time of an ap-
proximate index on W keywords as:

t(W) =B W|+a, (4)

the slope 8 and the intercept o are implementation depen-
dent and can be determined experimentally, as we did.

Size Time Slope
1 0.02 -
10000 0.207 0.000019
1M 22.253 | 0.000022
10M | 210.152 | 0.000021

Table 1: Experimental data showing linear growth
in lookup-time with size of an approximate index.

5. EXPLOITING FREQUENCY DISTRIBU-
TION OF KEYWORDS

Objects in a spatial dataset can share the same keyword.
For example, many objects can have the keyword hotel in
their textual descriptions. Moreover, very often some key-
words appear more frequently than others, and their fre-
quency distribution is skewed. For instance, in a dataset
about business listings, a keyword restaurant is more likely
to appear frequently in objects than consulate. In Sec-
tion 4, we presented a cost-based solution that selects a set
of nodes to store the approximate indexes. In this section,
we further improve our cost-based index-construction proce-
dure by exploiting the skewed distribution of keywords. The
following enhancements can further reduce both the space
cost of the approximate indexes and the average query time.

5.1 Index Construction

Intuitively, we want to reduce the number of keywords
in the approximate indexes. We achieve this by removing
frequent keywords from sibling nodes, and placing them in
their common parent instead. As a consequence, approxi-
mate indexes on frequent keywords can now appear in any
S-Node above an SA-Node. To further clarify, as shown in
Figure 4, SA-Nodes contain approximate indexes on infre-
quent keywords, while some S-Nodes above an SA-Node hold
approximate indexes on frequent keywords.

S-Nodes with approximate indexes

SA-Nodes

—— Keywords TﬂT Approximate index

Spatial object

Figure 4: Improved LBAK-tree exploiting the
skewed frequency distribution of keywords.

A keyword is considered frequent in a node n if the frac-
tion of n’s children having that keyword exceeds a certain

threshold, denoted by w. For example, if w = 0.9, then a
keyword is frequent if it appears in at least 90% of n’s chil-
dren. A small w decreases the space cost of the approximate
indexes. On the other hand, the average query time may in-
crease because we could visit false-positive nodes, since not
all of n’s children actually contain the frequent keywords.
Those false-positive paths will be pruned at SK-Nodes.

Algorithm outline: To discover the frequent keywords
in the tree, we maintain for each node n two sets of key-
words: a set of infrequent keywords W, and a set of fre-
quent keywords Fj,. We identify the frequent and infre-
quent keywords of the node n by examining its children.
We say a child n; has a particular keyword if the keyword
occurs in Wy, or Fy,. If a keyword w is frequent at node
n, then we remove w from the appropriate keyword sets
in all of n’s children. In this way, we ensure that popu-
lar keywords in a subtree only appear in the root of that
subtree. The propagation of frequent and infrequent key-
words is performed bottom-up until the keyword sets of all
nodes have been filled. The next step is to choose nodes to
build approximate indexes on. We use a procedure similar
to SelectSANodes from Section 4 but with a modified ben-
efit function that distinguishes the frequent and infrequent
keywords. Since the index-construction procedure requires
only minor modifications, we omit its pseudo-code.

Benefit of a node: The new benefit of a node n is deter-
mined by the space and time cost of building an approximate
index on W, U F,, versus building multiple indexes at n’s
children excluding the frequent keywords at n. We use the
following variations for pTime, cTime, pSpace, and cSpace
in the benefit function of Equation 1:

pTime(n) = p(n) x t(W, U Fy,)

m

cTime(n) = p(n) * t(F,) + Zp(m) # 1(Wh, U Fn;) — Fn)
pSpace(n) = s(W, U Fy) "

cSpace(n) = s(Fn) + Zs((Wm UF,)—Fn)
N 6

As before, we use p(n) to denote the probability of n sat-
isfying the spatial condition of any query in a workload.

5.2 Search Algorithm

Algorithm 7: InitSimilarKeywordSets

Input/Output: Same as Algorithm 2

1C«+{0,0,...,0} // k empty sets
2 for i=1 to k do

3 | C[i] - r.GetSimKwds (w;,d:);

4 end

5 return C'

Answering approximate-keyword queries on the improved
index follows the common search Algorithm 1, with dif-
ferent implementations for the helper procedures InitSimi-
larKeywordSets, ProcSNode and ProcSANode. We first probe
the approximate index (if any) at the root node to get the
similar query keywords that are frequent at the root (Algo-
rithm 7). During the tree traversal, when we encounter an
S-Node with an approximate index (on frequent keywords),
we probe it for similar keywords (Algorithm 8). Note that at

such an S-Node, we cannot prune subtrees based the textual
condition, because we cannot guarantee to have gathered all
similar keywords yet (we have only gathered those similar
keywords that are frequent). At an SK-Node we probe its
approximate index, and possibly prune its subtree based on
the textual information (Algorithm 9).

Algorithm 8: ProcSNode
Input/Output: Same as Algorithm 3

for i=1 to k do
| G +— C; Un;.GetSimKwds (w;)
end
G<—G17G27...7Gk;
S.push (n;, G);
return S

ST W

Algorithm 9: ProcSANode
Input/Output: Same as Algorithm 4

1 for i=1 to k do

2 | G; + C;Un;.GetSimKwds (w;,d;)
3 end

4 if all G;’s # () then

5 G<—G17G27...7Gk;

6 S.push (n;, G);

7 end

8 return S

5.3 Incremental Maintenance of Indexes

We discuss how to incrementally maintain the proposed
indexes in the presence of insertions and deletions. Insertion
of new objects into an LBAK-tree proceeds as follows. We
first insert the new object into a leaf according to the stan-
dard R*-tree insertion procedure (assuming no node-splits
for now). We then propagate the keywords of the new ob-
ject bottom-up. At an SK-Node we add the new keywords
to its stored set of keywords. At an SA-Node we add the
keywords to its approximate index. For the approach ex-
ploiting keyword frequencies, we must pay attention to add
the new keywords to the appropriate keyword set, i.e., the
one with frequent or infrequent keywords. Additionally, at
an S-Node we check its children for new frequent keywords,
and add them to its approximate index. We deal with R*-
tree node-splits as follows. For the two new nodes gener-
ated by the split, we recompute their stored set of keywords
(frequent and infrequent) by examining their children. If
the nodes are SA-nodes, then we delete their approximate
indexes, and give them a special “split” marker. After we
have propagated all new keywords up to the root, we re-
traverse the tree and rebuild approximate indexes at those
nodes with special markers (and remove the markers). Note
that the R*-tree may cause re-insertion of objects, causing
multiple splits in different branches. Therefore, the second
re-traversal of the tree is necessary if a split occurred. Dele-
tions can be dealt with in a similar fashion. Before deleting
a keyword at a particular node, we must examine all its chil-
dren to ensure none of them have that keyword (or if the
deletion causes a frequent keyword to become infrequent).

If many updates significantly change the distribution of
keywords, we can reevaluate for each SA-Node whether push-
ing their approximate index up or down the tree would yield

a benefit (according to the appropriate benefit function). We
can use a similar procedure to deal with changing workloads,
but must additionally modify the intersection probabilities
(p(n)) in the benefit function to reflect the new workload.

6. EXPERIMENTS

In this section, we present our experimental results on
the proposed techniques. We evaluated the following vari-
ations: the fixed-level (FL) approach from Section 3 (e.g.,
“FL-0” means the approximate indexes are at the root level),
the variable-level approach (VL) from Section 4, and the
variable-level approach exploiting keyword-frequencies (VLF)
from Section 5. We used the Flamingo Package [3] as our
approximate string-search solution. We also compare our
solutions with the MHR-tree [14]. We conducted all ex-
periments on a machine with a four-core Intel Xeon E5520
2.26Ghz processor and 12GB of RAM, running a Ubuntu op-
erating system. We implemented all algorithms (including
the R*-tree) in C++ and compiled them with GCC using the
“—03” flag. We stored the index structures in main memory
in order to achieve the goal of a high query throughput, as
required by many online search engines. If not stated oth-
erwise, we use a keyword-frequency threshold of w = 1 for
algorithm VLF, and a branching factor of 40 for the R*-tree.

Datasets: We used two real, large datasets. The first one
was a multimedia metadata collection extracted from Flickr
pages, called “CoPhIR Test Collection” [4]. We processed
the dataset to extract the photos taken in the U.S. based
on their latitude and longitude values. Moreover, we used
the keywords in the title, description, and tags of a photo as
its textual attribute. The average number of keywords per
object was 13.5. The final dataset had about 3.75 million
objects. The total raw data size was about 500MB. We refer
to this dataset as CoPhIR. The second dataset contained 20.4
million business listings in the U.S., obtained from Florida
International University.? Each business listing had a longi-
tude and latitude value, and a descriptive name consisting
of three keywords on average. The total raw data size was
about 4GB. We refer to this dataset as Business.

Queries: We generated a workload of 10,000 queries for
each dataset as follows. We randomly selected objects from
the dataset and used their coordinates as the query-window
center. We then created a 30km-by-30km query window
around that center, to reflect a spatial condition. For the
approximate keyword condition, we randomly chose two of
the keywords of the randomly chosen object. For most of
the experiments we used a normalized edit-distance function
and a similarity threshold of 0.8.

6.1 Comparison with MHR-Tree

We first compared our LBAK-tree constructed using the
VLF algorithm with the MHR-tree [14]. We used an edit
distance threshold of 2 for both approaches. The main dif-
ference between these two approaches is that the MHR-tree
uses a probabilistic signature scheme to represent textual
information in tree nodes, whereas the LBAK-tree uses ap-
proximate indexes and keywords for that purpose. Since the
min-wise signatures in the MHR-tree are probabilistic in na-
ture, this approach could miss some answers. On the other
hand, the size overhead of these signatures is very small.
Figure 5 shows the main issues with MHR-tree. First, the

http://n0.cs.fiv.edu/ihmc.com.forms.html

Recall (%)

Index Size (MB)

recall of MHR-tree shown in Figure 5(a) were constantly
below 50%, which may not be acceptable for many appli-
cations. Second, as we increased the signature size in or-
der to achieve a higher recall, the query time also increased
(Figure 5(b)). The reason is that the pruning power of the
min-wise signatures is limited, and the approximate keyword
condition is validated at the leaf level, leading to many edit-
distance computations as the recall increases.

60 —~90
CoPhIR —%— € 80 | CoPhIR —%—
50 rBusiness —6— W 1 <70 Business —6—
(4]
40 £ 60
/ =50 /
% / 240 /
20 £ © 830 ////
P~ M C'20
10 210 /
> Py é
0 < o

10 20 30 40 50 10 20 30 40 50
Signature Size (#Integers) Signature Size (#Integers)

(a) Recall (b) Query Time

Figure 5: Recall and query time of MHR-tree with
increasing signature size.

In Figure 6 we compare VLF with MHR-tree using 30
signatures for each tree node. Clearly, the merit of MHR-
tree lies in a comparably small index size, due to the com-
pact signatures. However, we see that VLF significantly
outperformed MHR-tree in terms of query time. Note that
as shown in Figure 5(b), the query time of MHR-tree will
likely increase if we give it more space.

1400
1200
1000
800
600
400
200

MHR-Tree
VLF

MHR-Tree
L

CoPhIR Business
Dataset

(a) Index Size

CoPhIR Business
Dataset

(b) Query Time

Figure 6: Comparison of VLF with MHR-tree using
30 signatures for each node.

6.2 Index Size and Query Time

Figure 7 shows the sizes of the individual index compo-
nents for various construction algorithms. Figure 8 shows
the corresponding query times. For the algorithms VL and
VLF, we report the minimum index size required to achieve
the best query performance.

Approx. Index
Keywords

Approx. Index
Keywords

FL-0 FL-1 FL-2 FL-3 FL-4 VL VLF
Index-Construction Algorithm

(a) CoPhIR

FL-0 FL-1 FL-2 FL-3 FL-4 VL VLF
Index-Construction Algorithm

(b) Business

Figure 7: Sizes of index components.

FL-0 FL-1 FL-2 FL-3 FL-4 VL VLF FL-0 FL-1 FL-2 FL-3 FL-4 VL VLF
Index-Construction Algorithm Index-Construction Algorithm
(a) CoPhIR (b) Business

Figure 8: Query time by index-construction method.

The fixed-level solutions FL-0 to FL-4 show a clear size-
trend in Figure 7: as we pushed the approximate indexes
down the tree, their space requirement increased because of
redundant keywords in adjacent nodes. On the other hand,
the query times decreased because we probed few, smaller
indexes rather than one bigger index. But the query time
eventually increased when pushing the indexes further down
(e.g., FL-3 in Figure 8(b)), again, because of keyword redun-
dancies. The space overhead for the approximate indexes for
algorithm VL was large compared to the R*-tree and key-
words, but the query time was good. Compared to VL,
algorithm VLF pushed frequent keywords up the tree to cut
the space by half without sacrificing query performance.

6.3 Space Budget

In Figure 9 we show the effect on query performance when
giving our index-construction methods FL, VL, and VLF a
space budget for building approximate indexes.

AmE 5 —
£ 6o b FL —%— | 870% FL —%—
E; VL wf :)’60
gY "] Eso
';40 ';40
B 30 6 30
320 & 20
210 1 10
< o < o0
2 3 4 5 6 7 8 9 2 3 456 7 8 91011
Space Budget (x100MB) Space Budget (x100MB)
(a) CoPhIR (b) Business

Figure 9: Query time with increasing space budget
for approximate indexes.

The fixed-level solution, FL, exhibited “jumps” when given
enough space to push down the approximate indexes one
more level, improving the query time. Note that at even
higher space budgets not shown in the figure, the query
time of FL will eventually increase, due to the cost of prob-
ing many, smaller approximate indexes at a lower level. VL’s
and VLF’s curves are smoother than FL’s because they have
more flexibility in placing the approximate indexes. VL’s
curve meets FL’s curve at some points because their perfor-
mance is limited by redundant keywords residing in many
approximate indexes. This observation is supported by VLF
outperforming both LF and VL at the points where LF and
VL meet. In summary, VLF offers good query performance
at significantly less space than the other two methods.

6.4 Scalability

We varied the number of objects indexed by different
LBAK-tree variants. Figures 10(a) and 11(a) show the to-
tal index sizes. For algorithms VL and VLF, we report the

Index Size (MB)

minimum index size required to achieve the best query per-
formance. Figures 10(b) and 11(b) show the corresponding
best query times. To emphasize the merit of VLF, we cre-
ated Figures 10(c) and 11(c) as follows. We determined the
minimum index size for VLF to achieve the best query time,
and used that size as a space budget for FL. and VL. As a
result, FL’s level could vary from point to point.

For both datasets, we observe a linear trend for the index
size and query time (Figures 10 and 11(a,b)). The fixed-
level approaches show a space-time tradeoff with the level.
As we pushed the approximate indexes down the tree the
index size increased because the number of duplicate occur-
rences of keywords in approximate indexes increased. How-
ever, the query time improved until FL-2 for 11(b) and FL-3
for 10(b), but then sharply degraded at lower levels. The
reason is that the cost of probing multiple smaller approxi-
mate indexes became higher than probing a few larger ones.
The effect of duplicate keywords can also be observed by
comparing VL and VLF. VLF consistently performed bet-
ter both in space and time, because it effectively minimized
the redundancy in keywords. Notice that space and time
increased more rapidly on the CoPhIR dataset than on the
Business dataset. The main reason is that the objects in the
CoPhIR dataset had, on average, a higher number of key-
words in their description. The longer textual description
contributed to the index size, and increased the chance of
intersecting with query keywords. In comparison, the Busi-
ness dataset was sparse in the textual dimension, making
queries highly selective and rendering their performance in-
sensitive to the number of indexed objects.

Finally, let us examine Figures 10(c) and 11(c). Here, the
difference between VL and VLF is clearer due to the smaller
scale of the Y-axis (as compared to the other figures). We see
that when given the same amount of memory, VLF clearly
outperformed the other methods, though they could achieve
a comparable performance with more memory (Figure 9).

6.5 Keyword-Frequency Threshold

Algorithm VLF uses a threshold w to decide whether a
keyword is frequent or not (Section 5). Intuitively, a thresh-
old of w = 0 (i.e., every keyword is considered to be frequent)
would produce an LBAK-tree with one approximate index
at the root. On the other hand, a threshold of w > 1 (no
keyword is frequent) would produce an LBAK-tree similar to
the one generated by VL. We ran experiments with varying
w values, the results of which are shown in Figure 12.

500

CoPhIR %ef e CoPhIR %ef
400 - Business & Gy ool Business -
oy 27
. £ R
. M 2] EB ey
200 $10 0055
& S
100 O 5
(=2
>
0 <o
010203040506070809 1 010203 040506070809 1
Frequency Threshold Frequency Threshold
(a) Approximate-Index Size (b) Query Time

Figure 12: Effect of keyword-frequency threshold.

We observe a clear space-time tradeoff with the keyword-
frequency threshold. As we increased the threshold, we
pushed more keywords to lower levels in the tree, causing
space overhead due to infrequent keywords being duplicated

FL-0 =1 FL-3 &N VLF ——

FL-1 FL-4
FL-2 VL FL —%— VL B~ VLF O

w70 : ; ® 35
E 60 X
g 50 o g
F 40 /{é/ g
30
T . & n®
o 20 % O
o 10 e

; >]

1 2 3 37 1 2 3 37 1 2 3 4

Number of Objects (millions) Number of Objects (millions) Number of Objects (millions)
(a) Total Index Size. (b) Query Time. (c) Query Time vs. VLF.

Figure 10: Index size and query time with varying numbers of indexed objects on CoPhIR.

FL-0 J VLF I] N J VLF]
Z v 222ZA
NN AN FL —%¢— VL --fF--VLF Q-
@ 20
—~ 1S M
2 - s
2 2800 | £ 15 L = a2 Ry |
N [a
[T I I / I\ R 210 [© S
St R \ 7 B N7\ . (]
Q1000 Lo A IV N FERNN [] > 5
T ool W A BRI RN B |1 o
- / Al A 2
I3 0
5 10 15 20 5 10 15 20 5 10 15 20

Number of Objects (millions)
(a) Total Index Size.

Number of Objects (millions)
(b) Query Time.

Number of Objects (millions)
(¢) Query Time vs. VLF.

Figure 11: Index size and query time with varying number of indexed objects on Business.

at multiple nodes. On the other hand, increasing the thresh-
old decreased the query time, because of the following two

effects: (1) we traversed fewer false-positive branches t

hat

did not actually have a keyword deemed frequent at its par-
ent, and (2) the total cost of probing a few smaller indexes

at a node’s children could be less than probing one big

in-

dex at the node itself. The VLF algorithm will try to push

indexes only down these beneficial paths.

7. CONCLUSION

In this paper we presented an index structure called LBAK-

tree to answer location-based approximate-keyword queries.

We showed how to combine approximate indexes efficiently

with a tree-based spatial index. We developed a cost-based

algorithm that selects tree nodes to store approximate
dexes. Moreover, we improved the techniques to exploit
frequency distribution of keywords, further reducing the

in-
the
in-

dex size and query times. Finally, we conducted extensive

experiments to show the efficiency of our techniques.

Acknowledgements: We thank Dr. Naphtali David Rishe

for generously providing us with the business listings dataset.

We also thank Shengyue Ji for his insightful discussions
garding this work.

8. REFERENCES

[1] S. Alsubaiee and C. Li. Fuzzy keyword search on
spatial data (demo). In DASFAA, 2010.
[2] N. Beckmann, H. P. Begel, R. Schneider, and

B. Seeger. The R*-tree: an efficient and robust access

method for points and rectangles. In SIGMOD, 199

[3] A. Behm, R. Vernica, S. Ji, J. Lu, L. Jin, Y. Lu, and

C. Li. UCI Flamingo Package 3.0, 2010.
[4] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese,

(12]

(13]

(14]

0.

R. Perego, T. Piccioli, and F. Rabitti. CoPhIR: a test

collection for content-based image retrieval. CoRR,
2009.

Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient
query processing in geographic web search engines. In
SIGMOD, 2006.

G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval
of the top-k most relevant spatial web objects.
PVLDB, 2(1), 2009.

I. D. Felipe, V. Hristidis, and N. Rishe. Keyword
search on spatial databases. In ICDFE, 2008.

A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, 1984.

M. Hadjieleftheriou, A. Chandel, N. Koudas, and

D. Srivastava. Fast indexes and algorithms for set
similarity selection queries. In ICDE, 2008.

R. Hariharan, B. Hore, C. Li, and S. Mehrotra.
Processing spatial-keyword (SK) queries in geographic
information retrieval (GIR) systems. In SSDBM, 2007.
C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE,
2008.

G. Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1), 2001.

S. Vaid, C. B. Jones, H. Joho, and M. Sanderson.
Spatio-textual indexing for geographical search on the
web. In SSTD, 2005.

B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou.
Approximate string search in spatial databases. In
ICDE, 2010.

D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating
mapped resources in web 2.0. In ICDE, 2010.

Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma.
Hybrid index structures for location-based web search.
In CIKM, 2005.

