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Abstract. Efficient search for nearest neighbors (NN) is a fundamen-
tal problem arising in a large variety of applications of vast practical
interest. In this paper we propose a novel technique, called NNH (“Near-
est Neighbor Histograms”), which uses specific histogram structures to
improve the performance of NN search algorithms. A primary feature of
our proposal is that such histogram structures can co-exist in conjunction
with a plethora of NN search algorithms without the need to substan-
tially modify them. The main idea behind our proposal is to choose a
small number of pivot objects in the space, and pre-calculate the dis-
tances to their nearest neighbors. We provide a complete specification
of such histogram structures and show how to make use of the infor-
mation they provide towards more effective searching. In particular, we
show how to construct them, how to decide the number of pivots, how
to choose pivot objects, how to incrementally maintain them under dy-
namic updates, and how to utilize them in conjunction with a variety of
NN search algorithms to improve the performance of NN searches. Our
intensive experiments show that nearest neighbor histograms can be effi-
ciently constructed and maintained, and when used in conjunction with
a variety of algorithms for NN search, they can improve the performance
dramatically.

1 Introduction

Nearest-neighbor (NN) searches arise in a large variety of applications such as
image and video databases [1], CAD, information retrieval (IR) [2], data com-
pression [3], and string matching/searching [4]. The basic version of the k-NN
problem is to find the k nearest neighbors of a query object in a database,
according to a distance measurement. In these applications, objects are often
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characterized by features and represented as points in a multi-dimensional space.
For instance, we often represent an image as a multi-dimensional vector using
features such as histograms of colors and textures. A typical query in an image
database is to find images most similar to a given query image utilizing such fea-
tures. As another example, in information retrieval, one often wishes to locate
documents that are most similar to a given query document, considering a set
of features extracted from the documents [2].

Variations of the basic k-NN problem include high-dimensional joins between
point sets. For instance, an all-pair k-nearest neighbor join between two point
sets seeks to identify the k closest pairs among all pairs from two sets [5, 6]. An
all-pair k-nearest neighbor semi-join between two point sets reports, for each
object in one data set, its k nearest neighbors in the second set [5].

Many algorithms have been proposed to support nearest-neighbor queries.
Most of them use a high-dimensional indexing structure, such as an R-tree [7]
or one of its variations. For instance, in the case of an R-tree, these algorithms
use a branch-and-bound approach to traverse the tree top down, and use dis-
tance bounds between objects to prune branches (minimum-bounding rectangles,
MBR’s) that do not need to be considered [8, 9]. A priority queue of interior nodes
is maintained based on their distances to the query object. In the various forms
of high-dimensional joins between point sets, a queue is maintained to keep track
of pairs of objects or nodes in the two data sets. Usually this queue is ordered
based on various criteria, to facilitate early stopping and/or pruning.

One of the main challenges in these algorithms is to perform effective prun-
ing of the search space, and subsequently achieve good search performance. The
performance of such an algorithm heavily depends on the number of disk ac-
cesses (often determined by the number of branches visited in the traversal) and
its run-time memory requirements (priority-queue size), which indicates mem-
ory (for priority-queue storage) and processor requirements for maintaining and
manipulating the queue. Performance can deteriorate if too many branches are
visited and/or too many entries are maintained in the priority queue, especially
in a high-dimensional space due to the well-known “curse of dimensionality”
problem [1].

In this paper we develop a novel technique to improve the performance of
these algorithms by keeping histogram structures (called “NNH”) of the nearest-
neighbor distances of a preselected collection of objects (called “pivots”). Such
structures record the nearest-neighbor distances for each pivot. These distances
can be utilized to estimate the distance at which the k-nearest neighbors for
each query object can be identified. They can subsequently be used to improve
the performance of a variety of nearest-neighbor search and related algorithms
via more effective pruning. The histogram structures proposed can co-exist in
conjunction with a plethora of NN search algorithms without the need to sub-
stantially modify these algorithms.

There are several challenges associated with the construction and use of such
structures. (1) The construction time should be small, their storage requirements
should be minimal, and the estimates derived from them should be precise. (2)



They should be easy to use towards improving the performance of a variety of
nearest-neighbor algorithms. (3) Such structures should support efficient incre-
mental maintenance under dynamic database updates. In this paper we provide
a complete specification of such histogram structures, showing how to efficiently
and accurately construct them, how to choose pivots effectively, how to incre-
mentally maintain them under dynamic updates, and how to utilize them in
conjunction with a variety of NN search algorithms to improve the performance
of NN searches.

The rest of the paper is organized as follows. Section 2 outlines the formal
definition of a nearest-neighbor histogram (NNH) structure, and describes its
efficient and accurate construction. In Section 3 we show how to use such his-
tograms to improve the performance for a variety of NN algorithms. Section 4
discusses how to choose pivots in such a structure. In Section 5 we discuss how to
incrementally maintain an NN histogram structure in the presence of dynamic
database updates. In Section 6 we report our extensive experimental results,
evaluating the construction time, maintenance algorithms, and the efficiency of
our proposed histograms when used in conjunction with a variety of algorithms
for NN search to improve their performance.

1.1 Related Work

Summary structures in the form of histograms have been utilized extensively
in databases in a variety of important problems, such as selectivity estimation
[10–12] and approximate query answering [13, 14]. In these problems, the main
objective is to approximate the distribution of frequency values using specific
functions and a limited amount of space.

Nearest Neighbor (NN) queries are very popular in many diverse sources
of information, including spatial, image, audio, and video databases. Many al-
gorithms exist for efficiently identifying the nearest neighbors of low and high-
dimensional data points for main memory data collections, in the field of compu-
tational geometry [15]. In databases, many different families of high-dimensional
indexing structures are available [16], and various techniques are known for per-
forming NN searches tailored to the specifics of each family of indexing struc-
tures. Such techniques include NN searches for the entity grouping family of
indexing structures (e.g., R-trees [7]) and NN searches for the space partitioning
family (e.g., Quad-trees [17]). The underlying principle of all such techniques is a
top down traversal of the hierarchical indexing structure, using an initial bound
for the distance to the NN and then iteratively refining such estimate (pruning
parts of the search space, if possible), until the NN is identified. Such techniques
generalize in a straightforward way to cases where the closest k neighbors (k-NN)
are requested.

In addition to the importance of NN queries as stand-alone query types, a
variety of other query types make use of NN searches. Spatial or multidimensional
joins [18] are a representative example of such query types. In the context of
spatial joins, different algorithms have been proposed for spatial NN semi-joins



and all-pair NN joins [5]. Such queries seek to “correlate” points from different
data sets using the NN information.

NN search algorithms can benefit from the histogram structures proposed
in this paper enabling them to perform more effective pruning. For example,
utilizing a good estimate to the distance of the k-th nearest neighbor of a query
point, one can form essentially a range query to identify nearest neighbors, using
the query object and the estimated distance and treating the search algorithm
as a “black box” without modifying its code.

Various studies [19–22] use notions of pivots or anchors or foci for efficient
indexing and query processing. Our approach is related in principle, but our
objectives and methodologies are different. We will elaborate on these issues in
Section 4.3 and demonstrate the utility of our proposal in Section 6 experimen-
tally.

2 NNH: Nearest-Neighbor Histograms

In this section we provide an overview of nearest-neighbor searches, present the
formal definition of nearest-neighbor histograms, and discuss their construction.

Consider a data set D = {p1, . . . , pn} with n objects in a Euclidean space
�d under some lp form. Formally, there is a distance function ∆ : �d ×�d → �,
such that given two objects pi and pj , their distance is defined as

∆(pi, pj) =
( ∑
1≤l≤d

|xi
l − xj

l |p
)1/p (1)

where (xi
1, . . . , x

i
d) and (xj

1, . . . , x
j
d) are the d coordinates of objects pi and pj ,

respectively.

Definition 1. Nearest Neighbor Search Given a query object, a j-Nearest Neigh-
bor (NN) search returns the j points in the database that are closest to the query
object.

Given an object p in the space, its NN distance vector of size t is a vector
v(p) = 〈r1, . . . , rt〉, in which each ri is the distance of p’s i-th nearest neighbor
in the database D.

A nearest-neighbor histogram (NNH) of the data set, denoted H , is a collec-
tion of objects (called “pivots”) with their NN vectors. In principle, these pivot
points may or may not correspond to points in the database. In the rest of the
paper, we assume that the pivots are not part of the data set for the purpose
of easy dynamic maintenance, as discussed in Section 5. Initially all the vectors
have the same length, denoted T , which is a design parameter and forms an up-
per bound on the number of neighbors NN queries specify as their desired result.
We choose to fix the value of T in order to control the storage requirement for
the NNH structure [23]. For any pivot p, let H(p, j) denote the j-NN distance
of p recorded in H . Let

H(p) = 〈H(p, 1), . . . , H(p, T )〉 (2)
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Fig. 1. An NN histogram structure H .

denote the NN vector for a pivot p in the histogram H .
Figure 1 shows such a structure. It has m = 50 pivots, each of which has an

NN vector of size T = 6. For instance, H(p1, 3) = 1.57, H(p2, 6) = 2.31, and
H(p50, 5) = 2.15.

In Section 4 we discuss how to choose pivots to construct a histogram. Once
we have chosen pivots, for each p of them, we run a T -NN search to find all its T
nearest neighbors. Then, for each j ∈ {1, . . . , T}, we calculate the distance from
the j-th nearest neighbor to the object p, and use these T distances to construct
an NN vector for p, by sorting these distances to form the vector.

3 Improving Query Performance

In this section we discuss how to utilize the information captured by nearest
neighbor histograms to improve query performance. A number of important
queries could benefit from such histograms, including k-nearest neighbor search
(k-NN) and various forms of high-dimensional joins between point sets, such as
all-pair k-nearest neighbor joins (i.e., finding k closest pairs among all the pairs
between two data sets), and k-nearest neighbor semi-joins (i.e., finding k NN’s
in the second data set for each object in the first set). The improvements to
such algorithms are twofold:(a) the processor time can be reduced substantially,
due to advanced pruning. This reduction is important since for data sets of high
dimensionality, distance computations are expensive and processor time becomes
a significant fraction of overall query-processing time [24]; and (b) the memory
requirement can be reduced significantly due to the much smaller queue size.

Most NN algorithms assume that there is a high-dimensional indexing struc-
ture on the data set, such as an R-tree or its variant [7]. They use a branch-
and-bound approach, in which they traverse the tree from the root to the leaf
nodes, and do necessary pruning in the traversal. To simplify our presentation,
we choose to highlight how it is possible to utilize our histogram structures to
improve the performance of common queries involving R-trees [7]. Similar con-
cepts carry out easily to other structures (e.g. SS-tree [25], SR-tree [26], etc.)
and algorithms as well.



3.1 Utilizing Histograms in k-NN Queries

Nearest neighbor searches involving R-trees request the nearest or k-NN objects
to a query point q. A typical k-NN search involving R-trees follows a branch-
and-bound strategy traversing the index top down. It maintains a priority queue
of “active” minimum bounding rectangles (MBR’s) [8, 9]. At each step, it main-
tains a bound to the k-NN distance, δ, from the query point. This bound is
initialized to infinity when the search starts. Using the geometry of an MBR
mbr and the coordinates of query object q, an upper-bound distance of the
query point to the nearest point in the mbr, namely MINMAXDIST (q, mbr),
can be derived [27]. In a similar fashion, a lower bound of the distance from q
to any point in mbr, namely MINDIST (q, mbr), is derived. Using these esti-
mates, we can prune MBR’s from the queue as follows:3 (1)For an MBR mbr,
if its MINDIST (q, mbr) is greater than MINMAXDIST (q, mbr′) of another
MBR mbr′, then mbr can be pruned. (2) If MINDIST (q, mbr) for an MBR
mbr is greater than δ, then this mbr can be pruned.

In the presence of NN histograms, we can utilize the distances to estimate an
upper bound of the k-NN of the query object q. Recall that the NN histogram
includes the NN distances for selected pivots only, and it does not convey immedi-
ate information about the NN distances of objects not encoded in the histogram
structure. We can estimate the distance of q to its k-NN, denoted δq, using the
triangle inequality between q and any pivot pi in the histogram, as shown in
Figure 2:

δq ≤ ∆(q, pi) + H(pi, k), 1 ≤ i ≤ m.4 (3)
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Fig. 2. Estimating the k-NN distance of query object q using an NNH.

Thus, we can obtain an upper bound estimate δest
q of δq as

δest
q = min

1≤i≤m

(
∆(q, pi) + H(pi, k)

)
(4)

The complexity of this estimation step is O(m). Since the histogram structure
is small enough to fit in the memory, and the number of pivots is small, the above
3 For simplicity, we focus on the pruning steps for finding the nearest neighbor. They

can be easily generalized to pruning steps for finding the k-NN objects.
4 Note that we use H(pi, k) instead of H(pi, k − 1) because in this paper we assume

that the pivots are not part of the database.



estimation can be conducted efficiently. After computing the initial estimate
δest
q for the query object q, we can use this distance to help the search process

prune MBR’s. That is, the search progresses by evaluating MINMAXDIST
and MINDIST between q and an R-tree MBR mbr as before. Besides the
standard pruning steps discussed above, the algorithm also checks if

MINDIST (q, mbr) > δest
q (5)

is true. If so, then this mbr can be pruned, since we know the k-NN’s of q cannot
be in this MBR. Thus we do not need to insert this MBR into the queue, reducing
the memory requirement (queue size) and the later operations of this MBR in
the queue. We will explore these advantages experimentally in Section 6.

Notice that the algorithm in [8, 9] is shown to be IO optimal [28]. Utilizing our
NNH structure may not reduce the number of IOs during the R-tree traversal.
However, our structure can help reduce the size of the priority queue, and the
number of queue operations. This reduction can help reduce the running time of
the algorithm, as shown in our experiments (Section 6). In addition, if the queue
becomes too large to fit into memory, this reduction could even help us reduce
the IO cost since part of the queue needs to be paged on disk.

3.2 Utilizing Histograms in k-NN Joins

A related methodology could also be applied in the case of all-pairs k-NN join
queries using R-trees. The bulk of algorithms for this purpose progress by insert-
ing pairs of MBR’s between index nodes from corresponding trees in a priority
queue and recursively (top-down) refining the search. In this case, using k-NN
histograms, one could perform, in addition to the type of pruning highlighted
above, even more powerful pruning.

More specifically, let us see how to utilize such a histogram to do pruning
in a k-NN semi-join search [5]. This problem tries to find for each object o1

in a data set D1, all o1’s k-nearest neighbors in a data set D2. (This pruning
technique can be easily generalized to other join algorithms.) If the two data
sets are the same, the join becomes a self semi-join, i.e., finding k-NN’s for all
objects in the data set. Assume the two data sets are indexed in two R-trees, R1

and R2, respectively. A preliminary algorithm described in [5] keeps a priority
queue of MBR pairs between index nodes from the two trees. In addition, for
each object o1 in D1, we can keep track of objects o2 in D2 whose pair 〈o1, o2〉
has been reported. If k = 1, we can just keep track of D1 objects whose nearest
neighbor has been reported. For k > 1, we can output its nearest neighbors while
traversing the trees, thus we only need to keep a counter for this object o1. We
stop searching for neighbors of this object when this counter reaches k.

Suppose we have constructed a histogram H2 for data set D2. We can utilize
H2 to prune portions of the search space in bulk by pruning pairs of MBR’s from
the priority queue as follows. For each object o1 in D1, besides the information
kept in the original search algorithm, we also keep an estimated radius δo1 of



the k-NN in D2 for this object. We can get an initial estimate for δo1 as before
(Section 3.1). Similarly, we will not insert a pair (o1, mbr2) into the queue if

MINDIST (o1, mbr2) ≥ δo1 . (6)
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Fig. 3. Pruning MBR-MBR pairs in the queue.

The above technique can be used to prune object-MBR pairs. Now we show
that this histogram is even capable to prune MBR-MBR pairs. As shown in
Figure 3, for each MBR mbr1 in tree R1 for dataset D1, consider a pivot pi in
the NN histogram H2 of dataset D2. For each possible object o1 in mbr1, using
the triangle inequality between o1 and pi, we know that the k-NN distance to
o1:

δo1 ≤ ∆(o1, pi) + H2(pi, k) ≤ MAXDIST (mbr1, pi) + H2(pi, k). (7)

MAXDIST (mbr1, pi) is an upper bound of the distance between any object in
mbr1 and object pi. Therefore,

δest
mbr1

= min
pi∈H2

(MAXDIST (mbr1, pi) + H2(pi, k)) (8)

is an upper bound for the k-NN distance for any object o1 in mbr1. This distance
estimate can be used to prune any (mbr1, mbr2) from the queue, if

δest
mbr1

≤ MINDIST (mbr1, mbr2) (9)

where MINDIST (mbr1, mbr2) is the lower bound of the distance between any
pair of objects from mbr1 and mbr2 respectively. MINDIST (mbr1, mbr2) can
be easily calculated using the coordinates of the corners of the two MBR’s.

In order to use this technique to do pruning, in addition to keeping an esti-
mate for the distance of the k-NN for each object in data set D1, we also keep an
estimate of distance δmbr1 for each MBR mbr1 in R1. This number tends to be
smaller than the number of objects in D1. These MBR-distance estimates can
be used to prune many MBR-MBR pairs, and reduce the queue size as well as
the number of disk IO’s.

Pruning in all-pair k-nearest neighbor joins: The pruning techniques de-
scribed above can be adapted to perform more effective pruning when finding



the k-nearest pairs among all pairs of objects from two data sets [5, 6]. Notice
that so far we have assumed that only D2 has a histogram H2. If the first data
set D1 also has a histogram H1, similar pruning steps using H1 can be done to
do more effective pruning, since the two sets are symmetric in this join problem.

By effectively limiting the size of the queue in terms of number of pairs, not
only the memory requirements are smaller, but also the running time is much
shorter. As we will see in Section 6, these pruning techniques have profound
impact on the performance of these join algorithms.

4 Constructing NNH Using Good Pivots

Pivot points are vital to NNH for obtaining distance estimates in answering NN
queries. We now turn to the problems associated with the choice of pivot points,
and the number of pivots.

Assuming we decide to choose m pivot points. The storage requirement for
NNH becomes O(mT ), since for each pivot point p we will associate a vector of
p’s distances to its T -NN’s. Let the m pivot points be p1, . . . , pm. Given a query
point q, we can obtain an estimate to the distance of q’s k-NN, δest

q , by returning

min
1≤i≤m

(
∆(q, pi) + H(pi, k)

)
(10)

This estimate is an upper bound of the true distance of q to its k-NN point and
is obtained utilizing the triangle inequality, among q, a pivot point pi, and pi’s
k-NN point. Assuming that the true distance of q to its k-NN is ∆k(q). This
estimation incurs an error of

min
1≤i≤m

(
∆(q, pi) + H(pi, k)

) − ∆k(q). (11)

Thus, the expected error for the estimation of any k-NN query q (for 1 ≤ k ≤ T )
becomes:

1
T

T∑
k=1

(
min

1≤i≤m

(
∆(q, pi) + H(pi, k)

) − ∆k(q)
)

(12)

The larger the number of pivot points m, the larger the space requirements
of the corresponding NNH structure. However, at the same time, the larger m
the higher the chances of obtaining a more accurate estimate δest

q . To see the
reason, observe that for a query point q, the estimate obtained with m+1 pivot
points is the same to or better than that obtained with m pivot points. It is
possible that either the additional pivot point pm+1 is closer to q or the distance
to its k-NN is tighter, or both. As a result, the distance estimate for q might be
better. It is evident that by increasing the number of pivot points, we increase
the storage overhead of NNH, but potentially improve its estimation accuracy.



4.1 Choosing Pivots

Given the number of pivot points m devoted to the NNH, we want to choose the
best m pivots to minimize the expected distance estimation error for any query
q. Query points are not known in advance, and any query point q on the data
set D could be equally likely. Moreover, the parameter k in a k-NN distance
estimate is also not known in advance, but provided at run time. At best we are
aware of an upper bound for it. For this reason, we decide to minimize the term

∆(q, pi) + H(pi, k), 1 ≤ i ≤ m (13)

providing the estimate to the k-NN query, by choosing as pivot points the set S
of m points that minimize the quantity:

∑
q∈D,pi∈S

∆(q, pi) (14)

That is, we minimize distances to pivot points assuming queries are points of D.
This goal is the well-known objective of the clustering problem and consequently
we obtain the m cluster centroids of D, as pivots. It is, in expectation, the best
choice of m pivots, provided that query points q belong to D, assuming no
knowledge of the number of NN points k-NN queries specify. This choice has the
added utility of enabling a plethora of known clustering algorithms (e.g., [29,
30]) to be applied in our problem of selecting the pivots.

4.2 Choosing the Number of Pivots

We now present our methodology for deciding the number of pivots m to use
when constructing an NNH structure. We start by describing a way to quantify
the benefits of an NNH with a given number of pivots. Consider an NN search
for a query object q. We use both the standard algorithm [8] and the improved
one described in Section 3.1. The queue-size-reduction ratio of the NNH with m
pivots for this search is:

reduction ratio = 1 − max queue size of improved algorithm
max queue size of standard algorithm

(15)

This ratio indicates how much memory the NNH can save by reducing the queue
size. Notice that we could also use the kNN semi-join operation to define the
corresponding queue-size-reduction ratio. Our experiments showed no major dif-
ference between the results of these two definitions, so we adopt the former
operation for defining queue-size-reduction.

Given a number m, we use the approach in Section 4.1 to find m good
pivots. We randomly select a certain number (say, 10) of objects in the data set
to perform NN searches, and calculate the average of their queue-size-reduction
ratios. The average value, denoted Bm, is a good measurement of the benefits
of the NNH with m pivots. In particular, using standard tail inequality theory



[31] one can show that such an estimate converges (is an unbiased estimate) to
the true benefit for random queries as the size of the sample grows. We omit the
details due to lack of space.

Our algorithm for deciding the m value for a data set is shown in Figure 4.
Its main idea is as follows: we first initialize m to a small number (e.g., 5)
and measure the average queue-size-reduction ratio Bm. Then we increment the
number of pivots (using the parameter SP ) and judge how much benefit (in
terms of the reduction ratio) the increased number of pivots can achieve. When
there is no big difference (using the parameter ε) between consecutive rounds,
the algorithm terminates and reports the current number of pivots.

Algorithm
Input: • D: data set.

• SP : step for incrementing the number of pivots.
• ε: Condition to stop searching.

Output: a good number of pivots.
Variables: • Bnew : reduction ratio in current iteration.

• Bold: reduction ratio in last iteration.
• m: number of pivots.

Method:
Bnew ← 0.0; m← 0;
DO {

Bold ← Bnew ;
m← m + SP ;
Choose m pivots to construct an NNH;
Perform kNN queries for sampled objects using the NNH;
Bnew ← average reduction ratio of the searches;

}
WHILE (Bnew - Bold > ε);
RETURN m;

Fig. 4. Algorithm for deciding pivot number

One potential problem of this iterative algorithm is that it could “get stuck”
at a local “optimal” number of pivots (since the local gain on the reduction ratio
becomes small), although it is still possible to achieve a better reduction ratio
using a larger pivot number. We can modify the algorithm slightly to solve this
problem. Before the algorithm terminates, it “looks forward” to check a larger
pivot number, and see if we can gain a better reduction ratio. Techniques for
doing so are standard in hill-climbing type of algorithms [32] and they can be
readily incorporated if required.

4.3 Comparisons with Other Approaches

There have been studies on selecting pivots to improve similarity search in metric
spaces [19–21,33]. The studies in [20, 21] claim that it is desirable to select pivots



that are far away from each other and from the rest of the elements in the
database. These studies converge on the claim that the number of pivots should
be related to the “intrinsic dimensionality” of a dataset [34].

Previous studies (e.g., [19–21, 33]) focus on search in general metric spaces
and use pivots and the triangle inequality to avoid unnecessary distance calcula-
tions. They deploy intersection of the distance “rings” to all the pivots to form a
candidate set in a search. As a result it is desirable for the intersection to be as
small as possible, and consequently choose the pivots to be far away from each
other, preferably outliers [20].

Existing techniques are not suitable for choosing pivots in an NNH. The rea-
son is that, an NNH relies on the local information kept by each pivot to estimate
the distances of the nearest neighbors to a query object, so that effective pruning
can be performed. Thus, the way we choose the number of pivots depends on how
clustered the objects are, so does the way we choose the pivots. In particular, the
number of pivots depends on how many clusters data objects form. In addition,
it is desirable to choose a pivot that is very close to many objects, so that it can
capture the local distance information about these objects. Thus, the selected
pivots might not be too far from each other, depending upon the distribution
of the objects. Clearly outliers are not good pivots for NNH, since they cannot
capture the local information of the neighboring objects. In Section 6.4, we will
experimentally show the performance advantages of our approach.

5 Incremental Maintenance

In this section we discuss how to maintain an NN histogram in the presence
of dynamic updates (insertions/deletions) in the underlying database. Under
dynamic updates, a number of important issues arise. When a new object is
inserted, it could affect the structure of the nearest neighbors of many pivots,
possibly prompting changes to their NN vectors. Similarly, when an object is
deleted, it could also change the NN structure of pivots. We associate a separate
value Ei for each pivot pi, which identifies the number of positions (starting
from the beginning) in the vector H(pi) that can be utilized to provide distance
estimates. All the distances after the Ei-th position cannot be used for NN
distance-estimation purposes, since as a result of some update operations they
are not valid anymore. Initially, Ei = T for all the pivots.

Figure 5 presents an example NN histogram in which each vector Vi has a
valid length Ei. All the vectors have the same initial length T = 6, as shown in
Figure 1. After modifications, the valid length E1 of vector H(p1) is 6, meaning
that all the 6 distances are valid. For pivot p2, E2 = 4 means we can only use its
first four distances as valid radii to derive NN distance estimates, and the last
two distances should be ignored. Similarly, E50 is 5 for the NN vector of pivot
p50.
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Fig. 5. Valid length for a NN vector.

5.1 Insertion

Upon insertion of an object onew into the data set, we perform the following
task. For each pivot pi whose Ei nearest neighbors may include onew, we need to
update their NN vectors. For updates, we scan all the pivots in the histogram,
and for each pivot pi, we compute the distance between pi and the new object,
i.e., ∆(pi, onew). Consider the distance vector of pi:

H(pi) = 〈r1, . . . , rEi〉
in the NN histogram. We locate the position of ∆(pi, onew) in this vector. Assume

rj−1 ≤ ∆(pi, onew) < rj

where j ≤ Ei. There are two cases.

– Such a position cannot be found. Then this new object cannot be among the
Ei nearest neighbors of pi and we do not need to update this NN vector.

– Such a position is found. As shown in Figure 6, onew cannot be among
the (j-1)-NN objects of pi. Therefore, as shown in Figure 7, we can insert
this distance ∆(pi, onew) to the j-th slot in the NN vector, and shift the
(Ei − j) distances after the slot to the right. Correspondingly, we increment
the number of valid distances for this vector Ei by 1. If Ei becomes larger
than T , we set Ei = T .
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Fig. 6. Inserting an object onew .

Deletion: shrink

Insertion: grow

���������
���������
���������
���������

NN VectorPivot ID Coordinates �� �

� � � � ���
����������� � � �

������� ���

� �� � ��

Fig. 7. Updating an NN vector.



5.2 Deletion

When deleting an object odel, we need to update the vectors for the pivots
whose nearest neighbors may have included odel. For each pivot pi, similarly to
the insertion case, we consider the distance vector of pi in H . We locate the
position of ∆(pi, odel) in this vector:

rj = ∆(pi, odel)

where j ≤ Ei. Two cases of interest arise:

– Such a position cannot be found. Then the deleted object can not be among
the Ei nearest neighbors of pi. Therefore, we do not need to modify the NN
vector H(pi) for this pivot pi.

– Such a position is found. We remove rj from the NN vector, and shift the
distances rj+1, . . . , rEi to the left, as shown in Figure 7. We decrement Ei

by 1.

As an example, consider the NN vectors shown in Figure 1. After deleting its
original H(p2, 2) and H(p2, 5) for pivot p2, and deleting the original H(p50, 3)
for pivot p50, the new histogram is shown in Figure 5.

Notice that in this paper we assume that the pivots are not part of the
database, deleting a data point from the database will not affect the formation
of pivots. It only could change the values in the NN vectors.

Lemma 1. After the above procedures for insertions and deletions, the new dis-
tance vectors form an NN histogram of the (modified) data set.

The worst case complexity of each procedure above for insertions and dele-
tions is O(m∗T ∗ log(T )), where m is the number of pivots in the histogram, and
T is the maximal length of each distance vector. The reason is that we can do
a binary search to find the inserting position of ∆(pi, onew) or ∆(pi, odel) in the
NN vector of pi, which takes O(log(T )) time. If the position is found, we need
O(T ) time to shift the rest of the vector (if we use a simple array implementa-
tion of the vector in memory). This operation is executed for all the m pivots in
the histogram. Since the number of pivots is small and the histogram can fit in
memory, the maintenance cost is low (see Section 6.3).

After many insertions and deletions, if the valid length of an NN vector
becomes too small, we can recompute a new NN distance for this pivot by doing
a T -NN search. In addition, we can periodically run the algorithms in Section 4 to
choose a new collection of pivots and construct the corresponding NN histogram.

6 Experiments

In this section we present the results of an experimental evaluation assessing
the utility of the proposed NNH techniques when used in conjunction with al-
gorithms involving NN searches. We used two datasets in the evaluation:



1. A Corel image database (Corel). It consists of 60, 000 color histogram fea-
tures. Each feature is a 32-dimensional float vector.

2. A time-series data set from the AT&T Labs. It consists of 5 million numerical
values generated for a fixed time span. We constructed datasets with different
dimensionalities by using different time-window sizes. For each window of
size d, we construct a d-dimensional data set by sequentially scanning the
data set, assigning all points in the underlying time series falling inside the
window to a multidimensional point, and we advance the window creating
new points, such that successive windows do not overlap.

We conducted sets of experiments evaluating the utility of the proposed his-
tograms for different problems of interest. The experiments evaluated the effect
of such an NNH structure in terms of the reduction of queue size (memory re-
quirement) and running time, for both a single k-NN query and a k-NN semi-join
query. In addition, we want to show the effect of different numbers of pivots, and
different ways to choose the number of the pivots and the pivot objects. In the
experiments we also reported the cost (size and construction time) of such an
NNH structure.

Both datasets exhibit similar trend in the results. We mainly focus on re-
porting the results of Corel image database. We will use the time-series data to
show the effects of dimensionality in our NNH approach and evaluate different
approaches to choosing pivots in our approach.

All experiments were performed on a SUN Ultra 4 workstation with four
300MHz CPU’s and 3GB memory, under the SUN OS 4.7 operating system.
The software was compiled using GNU C++, using its maximum optimization
(“-O4”). For the priority queue required in the algorithm described in [8, 9], we
used a heap implementation from the Standard Template Library [35].

6.1 Improving k-NN Search

We present experiments showing the effectiveness of NNH for NN searches using
R-trees on the Corel database. In general, any indexing technique that follows a
branch-and-bound strategy to answer NN queries can be used. As an example,
we implemented the k-NN algorithm described in [8, 9], using an R-tree with a
page size of 8, 192 bytes. We refer to this algorithm as the “standard version”
of the NN search. We assume that a query object may not belong to the data
set. We begin by using the NN histogram to get the initial estimate of the k-NN
distance for the query object. We perform pruning as described in Section 3.1:
We use the estimated k-NN distance to discard some MBR’s from the priority
queue based on the MINDIST of each MBR to the query object. We refer to this
version of the NN algorithm as the “improved version.”

Reducing Memory Requirements and Running Time Several important
factors affect the performance of a k-NN search including memory usage, run-
ning time, and number of IO’s. Memory usage impacts running time significantly,



since the larger the priority queue gets, the more distance comparisons the al-
gorithm has to perform, penalizing its running time. At large dimensionality,
distance comparisons are a significant fraction of the algorithm’s running time.

We use the size of the priority queue to measure memory usage, since ad-
ditional memory requirements are relatively small. While performing an R-tree
traversal, we kept two numbers: the maximal number of entries in the queue,
and the average number of entries in the queue. Every time we inserted an entry
to the queue, we recorded its queue size. After the search ended, we computed
the average of these sizes as the average queue size.
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Figure 8 shows the maximal queue size and the average queue size for the
standard and improved versions of the NN algorithm. We first ran a k-means
algorithm to generate 100 pivots, and constructed the NN histogram with T = 50.
Then we performed 10-NN queries for 100 randomly generated query objects, and
calculated the average number for both the maximal queue size and the average
queue size. We observe that we can reduce both the queue sizes dramatically
by utilizing the NNH to prune the search. For instance, when searching for the
10-NN’s for a query object, the average queue size of the standard version was
5, 036, while it was only 1, 768 for the improved version, which was only about
35% of that of the standard version. Similarly, the maximal queue size required
by the standard version was 9, 950, while it was only 2, 611 for the improved
version. One interesting observation is that the queue sizes do not change too
much as the value of k (specified in NN search) changes.

The maximum queue size determines how much memory the algorithm re-
quires. If a data set is very large, the queue size used by the standard version
of the k-NN algorithm might not fit in memory, which can make performance
deteriorate substantially. In this case, utilizing NNH to reduce the queue size can
dramatically improve the performance of the search. We will see shortly that this
improvement will be even more beneficial in the k-NN-join case.

Figure 9 shows the running times for different dataset sizes for both versions,
when we ran 10-NN queries. We let the number of image features vary in the



Corel database. It is shown that the improved version can always speed up the
query as the size increases. For instance, when the dataset is 60, 000, the standard
version requires an average of 238ms to retrieve the 10 NN’s for a query object,
while the improved version requires only an average of 127ms. This improvement
increases as the size of the dataset increases. The reason is that, increasing the
size of the dataset increases the size of the priority queue maintained in the
algorithm. As a result, the standard version has to spend additional processor
time computing distances between points and MBR’s of the index. In contrast
the effective pruning achieved by the improved version reduces this overhead.

Choosing the Number of Pivots As discussed in Section 4, by choosing the
pivots using cluster centroids, the larger the number of pivots, the better the
distance estimates, and as a result the better performance improvement.
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Fig. 10. Performance for different # of pivots

Figure 10 shows the performance improvement for different numbers of pivots
when we ran 10-NN queries for the 60, 000 Corel data set. The first data point in
the figure represents the standard version: its maximum queue size is 13, 772, its
average queue size is 6, 944. It is shown that as the number of pivots increases,
both the maximal queue size and the average queue size decrease. For instance,
by keeping only 100 pivots, we can reduce the memory requirement by more
than 66%. This improvement increases as we have more pivots. The extra gain
for this data set is not significant, exhibiting a diminishing-returns phenomenon.
As a result, it is evident that for this data set, an NNH of very small size can
offer very large performance advantages.

Our algorithm presented in Section 4.2 will report 100 as the “optimal”
number of pivots with ε = 0.1% and SP = 5. This result is consistent with
the intuition obtained by the observation of Figure 10. We also deployed the
suitable queue-size-reduction ratio definition for k-NN semi-join, and obtained
similar results.



6.2 Improving k-NN Joins

We implemented the k-NN semi-join algorithm in [5]. We performed a semi-join
using two different subsets D1 and D2 (with the same size) of objects in the
Corel data set, to find k-nearest neighbors for each object in D1, allowing k to
vary from 1 to 50. We constructed an NNH H2 for D2, with 100 pivots and
T = 50. We used these NN vectors to get the k-NN distance estimates for all
the objects in D1. Then, we performed a traversal of the R-trees with the help
of the priority queue. We used the approach described in Section 3.2 to prune
the priority queue. During the traversal, we tried to perform a depth-first search
on the R-tree of the first data set, so that pruning for the objects in the trees
enabled by the histograms can be used as early as possible.

We compared the standard semi-join algorithm and the improved one with
pruning obtained by NNH. The standard version required much more memory
than the improved version. For instance, when we used |D1| = |D2| = 10, 000
objects to do the semi-join, the algorithm required more than 2GB (virtual)
memory, which caused the operating system to keep swapping data between
memory and disk, yielding unacceptable performance for the standard version
of the algorithm.

For this reason, we restrict the size of datasets to be under 8, 000 to make the
standard version feasible on our test-bed. Each run required up to 1.2GB mem-
ory. We could not increase the size further since the performance of the standard
algorithm deteriorated dramatically due to page thrashing. In contrast, by uti-
lizing the histogram to perform more effective pruning, the improved algorithm
required only 230MB of memory, which is around 20% of that of the standard
version.

Reducing Memory Requirements and Running Time Similar to the case
of single-object k-NN searches, we collected the maximal and average queue sizes
for both the standard version and the improved one. Figure 11(a) presents the
results. It is shown that additional pruning using the NNH histograms makes
the semi-join algorithm much more efficient. For instance, when we performed
a 10-NN semi-join search, the maximal and average queue size of the standard
version were 10.2M (million) and 6.3M respectively, while it was only 2.1M and
1.2M for the improved version.

We also measured the running time for both versions. The results are shown
in Figure 11(b). Clearly by using the improved version, we can reduce the running
time dramatically. For instance, when performing a 10-NN semi-join, utilizing
the NNH structure we can reduce the time from 1, 132 seconds to 219 seconds.

Figure 12(a) and (b) show the running times and queue sizes for different
|D1| = |D2| data sizes. The figures show that as the data size increases, the
semi-join with pruning achieves significant performance advantages.

To evaluate the effect of different dimensionalities, we used the time-series
dataset. We constructed each record with different window sizes from the dataset
to achieve different dimensionalities. We extracted two data sets D1 and D2, and
each contained 2000 records. Figure 13(a) shows that the NNH structure can



0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50

Q
u
e
u
e
 s

iz
e
 (

#
 o

f 
e
n
tr

ie
s 

in
 t
h
o
u
sa

n
d
s)

k value (as in k-NN join)

K-NN Semi-Join

Maximum Queue Size for standard version
Average Queue Size for standard version

Maximum Queue Size for improved version
Average Queue Size for improved version

(a) Queue size.

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50

R
un

ni
ng

 ti
m

e 
(s

)

k value (as in k-NN Join)

standard version
improved version

(b) Running time

Fig. 11. Semi-join performance improvement for different k values.

consistently help to reduce the maximal and average queue sizes. As shown in
Figure 13(a), it appears that there is no strong correlation between the dimen-
sionality and the effect of the NNH structure. The reason is that for the range of
dimensions shown in the figure, the number of clusters in the underlying datasets
remains stable.

Figure 13(b) shows the same trend for the running time for different dimen-
sionalities. The running time of the improved version takes around 33% of the
time of the standard version. The effectiveness of our NNH structure remains
stable for different dimensionalities.

Effects of Varying Number of Pivots We evaluated the effect of different
numbers of pivots in the k-NN semi-join. We performed a 10-NN semi-join on the
two data sets D1 and D2 from the time-series dataset, each with 4, 000 objects.
The dimensionality for both datasets is 30. Figure 14 reports the reduced max-
imum queue size and average queue size during the join process, when an NNH
for dataset D2 is used. Similarly to Section 6.1, the first data point represents
the standard version at 6.7M and 4.3M, for the maximal and average queue size,
respectively. This result demonstrates that increasing the number of pivots in an
NNH can further reduce the memory requirement for the queue, since we have
better estimates of the NN distances of the objects in D1.

6.3 Costs and Benefits of NN Histograms

While it is desirable to have a large number of pivots in an NNH, we should also
consider the costs associated with such a structure. In particular, we should pay
attention to (1) the storage space; (2) the initial construction cost (off-line); and
(3) the incremental-maintenance cost in the case of database updates (online).
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Fig. 12. Semi-join performance for different data sizes.

We measured these different costs, as well as the performance improvement
for different numbers of pivots. We performed 10-NN queries and semi-joins on
our 60, 000-object Corel dataset with different numbers of pivots, and measured
the costs. For each pivot, we maintain its 50 NN radii, thus, T = 50. Table 1
shows the time to construct the NNH, the required storage space for NNH,
and the time for a single dynamic maintenance operation (insertion or dele-
tion). Notice that entries for the maintenance time per each update are all zero,
corresponding to times below the precision of our timing procedures. The two
queue-size rows represent the ratio of the improved maximal queue sizes versus
that of the standard version. For instance, when we had 100 pivots in the NNH,
the maximal-queue-size-reduction ratio was 72% for a single 10-NN query. We
do not include the numbers for the average-queue size since they follow the same
trend as the maximal queue sizes.

Table 1. Costs and benefits of an NNH structure.

Number of pivots 10 50 100 150 200 250 300 350 400

Construction Time (sec) 2.1 10.2 19.8 28.2 34.1 40.8 48.6 53.4 60.2
Storage space (kB) 2 10 20 30 40 50 60 70 80
Time for dynamic maintenance (ms ≈) 0 0 0 0 0 0 0 0 0
Queue reduction ratio(k-NN) (%) 60 70 72 76 76 76 77 80 82
Queue reduction ratio (semi-join) (%) 70 72 74 77 77 78 79 79 80

From the table we can see that the size of the NNH is small, compared to the
size of the data set, 28.5MB. The construction time is very short (e.g., less than
20 seconds for an NNH with 100 pivots). The incremental-maintenance time is
almost negligible. The performance improvement is substantial: for instance, by
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Fig. 13. Semi-join performance for different dimensionalities.
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keeping 100 pivots we can reduce the maximal queue size by 72% in a 10-NN
search, and 74% in a semi join.

6.4 Comparison with Other Methods of Choosing Pivots

The final set of experiments we present compares our “clustering” approach of
choosing pivots to ones existing in the literature [19–22]. Previous methods of
utilizing the concept of pivots have been proposed in the context of search in
metric spaces. These methods locate pivots that are far away from each other,
and far away from other points in the dataset. Although such an approach makes
sense in the context of the problem these works address, it is not suitable for the
problem at hand. We chose the approach presented in [21] as a representative of
these methods, denoted as “OMNI” in the experiments that follow. We compared
this approach and our clustering approach of choosing pivots in NNH in terms
of their effect of reducing the queue size and running time in an NN search.



Figures 15(a) and (b) show the semi-join queue size and running time for both
approaches, respectively. In the experiments, both data sets consist of 2, 000 ob-
jects from the time-series dataset. In both figures, the tallest bar is the queue size
and running time of the standard version without using NNH pruning, respec-
tively. Apparently our clustering approach of choosing pivots is more effective in
reducing the queue size and the running time than the OMNI approach.
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Fig. 15. Comparison of different ways to choose pivots

This observation can be explained by examining the different ways the ap-
proaches utilize pivots to perform pruning of the respective search space. The
approach in [21] essentially records all distances between all the points and the
pivots. When a query arrives, it produces the candidate set by identifying the
overlap of the “valid answer ring” of every pivot point. The main design goal is
to minimize the overlap and thus minimize the candidate set. In this context, it
is reasonable to choose the far away points/outliers as the pivots. However, our
clustering approach relies on the local pivots to give a best possible estimation
of the NN radius. The closer a point gets to the pivot, the better estimation it
usually achieves. So by choosing far away pivots, the estimations are inevitably
bad due to the large distance between points and pivots.
Summary: our intensive experiments have established that the improved prun-
ing enabled via the use of an NNH structure can substantially improve the
performance of algorithms involving k-NN searches, while the costs associated
with such a structure are very low. These improvements increase as the size of
the data sets increases, leading to more effective and scalable algorithms. It is
evident that standard algorithms for k-NN search and join problems are sig-
nificantly challenged when the size of the data sets increases. Their run-time
memory requirements increase significantly and performance degrades rapidly.
The improved pruning techniques via the use of NNH can alleviate these prob-
lems, reducing the run-time memory requirements (and subsequently processor
requirements) significantly.



7 Conclusions

In this paper we proposed a novel technique that uses nearest-neighbor histogram
structures to improve the performance of NN search algorithms. Such histogram
structures can co-exist in conjunction with a plethora of NN search algorithms
without the need to substantially modify them. The main idea is to preprocess
the data set, and selectively obtain a set of pivot points. Using these points, the
NNH is populated and then used to estimate the NN distances for each object,
and make use of this information towards more effective searching.

We provided a complete specification of such histogram structures, showing
how to efficiently and accurately construct them, how to incrementally maintain
them under dynamic updates, and how to utilize them in conjunction with a
variety of NN search algorithms to improve the performance of NN searches. Our
intensive experiments showed that such a structure can be efficiently constructed
and maintained, and when used in conjunction with a variety of NN-search
algorithms, could offer substantial performance advantages.
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28. Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: A cost model for nearest
neighbor search in high-dimensional data space. In: PODS. (1997) 78–86

29. Guha, S., Rastogi, R., Shim, K.: CURE: An Efficient Clustering Algorithm for
Large Databases. Proceedings of ACM SIGMOD (1998) 73–84

30. Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining.
In: VLDB, Los Altos, USA, Morgan Kaufmann Publishers (1994) 144–155

31. Motwani, R., Raghavan, P.: Randomized Algorithms. Prentice Hall (1997)
32. Bishop, C.: Neural Networks for Pattern Recognizion. Oxford University Press

(1996)
33. Yianilos: Data structures and algorithms for nearest neighbor search in general

metric spaces. In: SODA: ACM-SIAM. (1993)
34. Chavez, E., Navarro, G., Baeza-Yates, R.A., Marroquin, J.L.: Searching in metric

spaces. ACM Computing Surveys 33 (2001) 273–321
35. Standard Template Library: http://www.sgi.com/tech/stl/ (2003)


